Propofol provides some degree of muscle relaxation. Previous studies have investigated the effects of propofol on either the central or peripheral parts of the motor system. In this study, we simultaneously assessed both central (spinal) and peripheral effects. In 15 patients, general anesthesia was induced and maintained with fentanyl and midazolam. Neuromuscular blocking drugs were not administered. To investigate the central portion of the motor system, we monitored spinal F waves, an electrophysiologic variable of alpha-motoneuron excitability. Direct electrophysiologic muscle responses (M waves) and mechanomyography were studied to detect the peripheral effects of propofol on neuromuscular transmission or muscle contraction strength. After baseline recordings, 3 IV boluses of propofol (2 times 1 mg/kg followed by 2 mg/kg) were administered at 5-min intervals. Mean F-wave amplitudes were significantly reduced compared with baseline measurements (mean +/- SD, 0.22 +/- 0.13 mV) after the first (0.13 +/- 0.08 mV; P < 0.05), second (0.08 +/- 0.09 mV; P < 0.05), and third (0.03 +/- 0.04 mV; P < 0.01) propofol injections. M-wave amplitudes and mechanomyography signals remained unchanged. Our data suggest that the central part, but not the peripheral part, of the motor system is impaired after bolus administration of propofol.
We performed this study to assess the recovery period after neuromuscular blockade by electromyographic F-wave analysis, a method that supplies more information about more proximal parts of the motor system than conventionally used methods, e.g., mechanomyography (MMG). In 20 neurosurgical ASA physical status I or II patients anesthesia was induced and maintained with IV fentanyl and midazolam. Patients were randomly assigned to receive either 0.25 mg/kg mivacurium (MV group, n = 10) or 0.1 mg/kg pancuronium (PC group, n = 10) intraoperatively. MMG monitoring of the adductor pollicis muscle was performed continuously. F waves were recorded at the abductor pollicis muscle of the contralateral hand at train-of-four (TOF) ratios of 0.1, 0.25, 0.5, 0.7, 0.75, 0.8, 0.85, 0.9, and 0.95. Recovery of F-wave amplitudes after neuromuscular blockade with pancuronium was significantly slower compared with mivacurium (P = 0.004) during the clinically important recovery period defined by MMG TOF ratios from 0.7 to 0.95. This electrophysiologic finding suggests a differential recovery of the motor system after administration of pancuronium and mivacurium not detected by MMG.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.