Outlier detection is one of the major data mining methods. This paper proposes a three-step approach to detect spatio-temporal outliers in large databases. These steps are clustering, checking spatial neighbors, and checking temporal neighbors. In this paper, we introduce a new outlier detection algorithm to find small groups of data objects that are exceptional when compared with the remaining large amount of data. In contrast to the existing outlier detection algorithms, the new algorithm has the ability of discovering outliers according to the non-spatial, spatial and temporal values of the objects. In order to demonstrate the new algorithm, this paper also presents an example of application using a data warehouse.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.