Estimations of porosity and permeability from well logs are important yet difficult tasks encountered in geophysical formation evaluation and reservoir engineering. Motivated by recent results of artificial neural network (ANN) modelling offshore eastern Canada, we have developed neural nets for converting well logs in the North Sea to porosity and permeability. We use two separate back‐propagation ANNs (BP‐ANNs) to model porosity and permeability. The porosity ANN is a simple three‐layer network using sonic, density and resistivity logs for input. The permeability ANN is slightly more complex with four inputs (density, gamma ray, neutron porosity and sonic) and more neurons in the hidden layer to account for the increased complexity in the relationships. The networks, initially developed for basin‐scale problems, perform sufficiently accurately to meet normal requirements in reservoir engineering when applied to Jurassic reservoirs in the Viking Graben area. The mean difference between the predicted porosity and helium porosity from core plugs is less than 0.01 fractional units. For the permeability network a mean difference of approximately 400 mD is mainly due to minor core‐log depth mismatch in the heterogeneous parts of the reservoir and lack of adequate overburden corrections to the core permeability. A major advantage is that no a priori knowledge of the rock material and pore fluids is required. Real‐time conversion based on measurements while drilling (MWD) is thus an obvious application.
Neural computing has moved beyond simple demonstration to more significant applications. Encouraged by recent developments in artificial neural network (ANN) modelling techniques, we have developed committee machine (CM) networks for converting well logs to porosity and permeability, and have applied the networks to real well data from the North Sea. Simple three‐layer back‐propagation ANNs constitute the blocks of a modular system where the porosity ANN uses sonic, density and resistivity logs for input. The permeability ANN is slightly more complex, with four inputs (density, gamma ray, neutron porosity and sonic). The optimum size of the hidden layer, the number of training data required, and alternative training techniques have been investigated using synthetic logs. For both networks an optimal number of neurons in the hidden layer is in the range 8–10. With a lower number of hidden units the network fails to represent the problem, and for higher complexity overfitting becomes a problem when data are noisy. A sufficient number of training samples for the porosity ANN is around 150, while the permeability ANN requires twice as many in order to keep network errors well below the errors in core data. For the porosity ANN the overtraining strategy is the suitable technique for bias reduction and an unconstrained optimal linear combination (OLC) is the best method of combining the CM output. For permeability, on the other hand, the combination of overtraining and OLC does not work. Error reduction by validation, simple averaging combined with range‐splitting provides the required accuracy. The accuracy of the resulting CM is restricted only by the accuracy of the real data. The ANN approach is shown to be superior to multiple linear regression techniques even with minor non‐linearity in the background model.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.