In this work, we produced nickel oxide nanostructures that show high electrochemical capacitive behaviour, using fungus-one of the most common life forms in nature. Cladosporium cladosporioides fungi are particularly attractive biotemplates due to their tubular structures. The nanostructured porous microtubes were prepared by chemical precipitation onto fungi. The morphological properties of the biosynthesized NiO microtubes were studied by transmission electron microscope (TEM). The Brunauer-Emmett-Teller (BET) surface area was found to be 119.72 m 2 g-1 with an average pore size distribution of 7.5 nm. A maximum capacitance value of 334 F g-1 was observed at 0.8 A g-1 , and a capacitance retention of approximately 95% was obtained after 1000 cycles.
Recently, plant pollen has been used as a source of activated carbon to produce carbon-containing supercapacitor electrodes. However, in this study, pollen was used as a biotemplate with a completely different approach. As a biotemplate, pollen offers a wide range of varieties in terms of exterior, porosity, shape, and size. An electrode formed by the use of metal oxide grown on the pollen exine layer (sporopollenin microcapsules) as the active substance will inevitably exhibit good electrochemical capacitive properties. Juglans male flowers have been distinguished by dissection from anthers. Isolation of pollen grains from anthers was carried out using sieving from suitable sieves (45–200 μm). Juglans sporopollenin exine microcapsules (SECs) were separated from the intine and protoplasm by acetolysis in combination with reflux. The solution containing SECs, metal ions, and Ni foam was put into a Teflon-lined hydrothermal container, and then, it was reacted at 120 °C for 15 h. The resulting precipitate, as well as the Ni foam, was heat-treated at 300 and 360 °C for 3 h in air. The raw pollen, chemically treated pollen, and cobalt-coated SEC (CoSEC) and CoSEC/Ni foam were characterized using scanning electron microscopy, Brunauer–Emmett–Teller surface area analysis, thermogravimetric analysis, and X-ray diffraction techniques. Two different types of supercapacitor electrode designs, with the use of exine microcapsules of Juglans sporopollenin, were performed for the first time. The maximum specific capacitance was up to 1691 F g –1 at 5 A g –1 .
In this work, nanostructured La-based materials were produced by chemical precipitation method onto Cladosporium cladosporioides fungal hyphae in aqueous solution. Materials were annealed at various temperatures between 100• C-600• C. The morphological properties of the synthesized material were studied by transmission electron microscopy. The surface area for sample annealed at 360• C was determined to be 85.64 m 2 /g using Brunauer-Emmett-Teller method. The nitrogen adsorption and desorption isotherm displayed a typical type-IV isotherm. Electrochemical properties of produced material were studied using cyclic voltammetry, long term charge/discharge analysis and impedance spectroscopy in the 0.5 M Na2SO4 electrolyte. The obtained nanostructured porous electrode exhibits quasi-rectangular shaped cyclic voltammetry curves with a specific capacitance of 2190 F/g at a scan rate of 2 mV/s.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.