Bir ortamın derinlik bilgisi üç boyutlu yeniden oluşturma, otonom sistemler gibi derinlik bilgisine ihtiyaç duyulan birçok uygulamada yoğun olarak kullanılmaktadır. Stereo görüntü çiftleri kullanılarak derinlik bilgisi elde edilmesi, uzun yıllardır öne çıkan çalışma konuları arasında yer almaktadır. Son yıllarda derin öğrenme alanındaki gelişmeler, stereo görüntüler kullanılarak derinlik elde edilmesi alanında yapılan çalışmaları da etkilemiştir. Son dönemde, derin öğrenme tabanlı stereo eşleştirme alanındaki çalışmalar daha çok derinlik (eşitsizlik) haritalarının elde edilmesi ve düzeltilmesi alanında yoğunlaşmaktadır. Derin öğrenme tabanlı derinlik haritası düzeltme işlemlerinde eşleşme maliyetleri üzerinden yapılan düzeltme işlemleri daha başarılı sonuçlar üretilmesini sağlamıştır. Fakat eşleşme maliyetlerine doğrudan ulaşmak her zaman mümkün olmamaktadır. ZED ve Intel RealSense gibi hazır sistemler tarafından üretilen derinlik haritaları son kullanıcıya sunulmaktadır. Çalışmada sadece sol görüntü ve derinlik haritası aracılığıyla düzeltme işlemi yapan bir ağ yapısı önerilmiştir. Önerilen ağ, KITTI 2012 ve KITTI 2015 veri kümeleri üzerinde test edilmiştir. Deneysel çalışmalar sonucunda olarak giriş derinlik haritalarının doğruluğunun arttırılması için önerilen ağ yapısının kullanılabileceği nicel ve nitel sonuçlar ile gösterilmiştir.
Depth is essential information for autonomous robotics applications that need environmental depth values. The depth could be acquired by finding the matching pixels between stereo image pairs. Depth information is an inference from a matching cost volume that is composed of the distances between the possible pixel points on the pre-aligned horizontal axis of stereo images. Most approaches use matching costs to identify matches between stereo images and obtain depth information. Recently, researchers have been using convolutional neural network-based solutions to handle this matching problem. In this paper, a novel method has been proposed for the refinement of matching costs by using recurrent neural networks. Our motivation is to enhance the depth values obtained from matching costs. For this purpose, to attain an enhanced disparity map by utilizing the sequential information of matching costs in the horizontal space, recurrent neural networks are used. Exploiting this sequential information, we aimed to determine the position of the correct matching point by using recurrent neural networks, as in the case of speech processing problems. We used existing stereo algorithms to obtain the initial matching costs and then improved the results by utilizing recurrent neural networks. The results are evaluated on the KITTI 2012 and KITTI 2015 datasets. The results show that the matching cost three-pixel error is decreased by an average of 14.5% in both datasets.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.