The choice of reactor structural material design must take into account the TOKAMAK fusion reactors' structural reliability. Due to their high levels of heat and energy, fusion reactions have significant deformation effects, which reduce the efficiency of energy production in reactors. Material selection, erosion and damage, heat and stress management, reliability analysis, maintenance, and inspection are crucial elements in determining how reliable fusion reactors are. The focus of this work is on material selection and reliability analysis based on these parameters. The most common wall materials used in fusion reactors are tungsten, beryllium, steel, or graphite. It is advised to utilize aluminum because harmful Beryllium dust limits the study of this element. For this purpose, a target of aluminum samples is established with a plasma of He ions created by glow discharge. The dependability of the samples is determined by calculating the Weibull Distribution and measuring the roughness of the sample surfaces following exposure.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.