A study design procedure was developed and demonstrated for the deployment of portable onboard tailpipe emissions measurement systems for selected highway vehicles fueled by gasoline and E85 (a blend of 85% ethanol and 15% gasoline). Data collection, screening, processing, and analysis protocols were developed to assure data quality and to provide insights regarding quantification of real-world intravehicle variability in hot-stabilized emissions. Onboard systems provide representative real-world emissions measurements; however, onboard field studies are challenged by the observable but uncontrollable nature of traffic flow and ambient conditions. By characterizing intravehicle variability based on repeated data collection runs with the same driver/vehicle/route combinations, this study establishes the ability to develop stable modal emissions rates for idle, acceleration, cruise, and deceleration even in the face of uncontrollable external factors. For example, a consistent finding is that average emissions during acceleration are typically 5 times greater than during idle for hydrocarbons and carbon dioxide and 10 times greater for nitric oxide and carbon monoxide. A statistical method for comparing on-road emissions of different drivers is presented. Onboard data demonstrate the importance of accounting for the episodic nature of real-world emissions to help develop appropriate traffic and air quality management strategies. INTRODUCTIONMotor vehicle emissions contribute substantially to national and local emission inventories for hydrocarbons (HCs), nitrogen oxides (NO x ), and carbon monoxide (CO). 1-3 The typical approach for estimating vehicle emissions is to use area-wide driving-cycle-based models such as MOBILE5b, MOBILE6, and EMFAC. The tailpipe emissions data for these models are typically based on average emissions per mile over standard driving cycles as measured in the laboratory using a dynamometer. Idle emissions are typically extrapolated from a g/mi basis based on driving cycles with low average speeds to a g/sec basis but are not estimated based on measurement of actual idling. A key hypothesis of this work is that the emission rate during idling is substantially lower than for other driving modes. Second-by-second data collected in the laboratory and on the road demonstrate that vehicle emissions are episodic in nature, indicating that average emissions for a trip are often dominated by short-term events. Thus, while driving-cycle-based models are useful for developing area-wide emission inventories, these models lack the temporal and spatial resolution to properly characterize the episodic microscale nature of vehicle emissions. The latter is a critical need to identify and develop effective traffic management strategies that will result in real-world emissions reductions. Furthermore, the standard driving cycles may not adequately represent real-world driving for a particular location because of failure to represent the influence of real-world traffic flow. Therefore, it is importan...
Through the comparison of several regional-scale chemistry transport modeling systems that simulate meteorology and air quality over the European and North American continents, this study aims at (i) apportioning error to the responsible processes using timescale analysis, (ii) helping to detect causes of model error, and (iii) identifying the processes and temporal scales most urgently requiring dedicated investigations. The analysis is conducted within the framework of the third phase of the Air Quality Model Evaluation International Initiative (AQMEII) and tackles model performance gauging through measurement-to-model comparison, error decomposition, and time series analysis of the models biases for several fields (ozone, CO, SO, NO, NO, PM, PM, wind speed, and temperature). The operational metrics (magnitude of the error, sign of the bias, associativity) provide an overallsense of model strengths and deficiencies, while apportioning the error to its constituent parts (bias, variance, and covariance) can help assess the nature and quality of the error. Each of the error components is analyzed independently and apportioned to specific processes based on the corresponding timescale (long scale, synoptic, diurnal, and intraday) using the error apportionment technique devised in the former phases of AQMEII. The application of the error apportionment method to the AQMEII Phase 3 simulations provides several key insights. In addition to reaffirming the strong impact of model inputs (emission and boundary conditions) and poor representation of the stable boundary layer on model bias, results also highlighted the high interdependencies among meteorological and chemical variables, as well as among their errors. This indicates that the evaluation of air quality model performance for individual pollutants needs to be supported by complementary analysis of meteorological fields and chemical precursors to provide results that are more insightful from a model development perspective. This will require evaluaion methods that are able to frame the impact on error of processes, conditions, and fluxes at the surface. For example, error due to emission and boundary conditions is dominant for primary species (CO, particulate matter (PM)), while errors due to meteorology and chemistry are most relevant to secondary species, such as ozone. Some further aspects emerged whose interpretation requires additional consideration, such as the uniformity of the synoptic error being region- and model-independent, observed for several pollutants; the source of unexplained variance for the diurnal component; and the type of error caused by deposition and at which scale.
The impact of air pollution on human health and the associated external costs in Europe and the United States (US) for the year 2010 are modeled by a multi-model ensemble of regional models in the frame of the third phase of the Air Quality Modelling Evaluation International Initiative (AQMEII3). The modeled surface concentrations of O3, CO, SO2 and PM2.5 are used as input to the Economic Valuation of Air Pollution (EVA) system to calculate the resulting health impacts and the associated external costs from each individual model. Along with a base case simulation, additional runs were performed introducing 20 % anthropogenic emission reductions both globally and regionally in Europe, North America and east Asia, as defined by the second phase of the Task Force on Hemispheric Transport of Air Pollution (TF-HTAP2).Health impacts estimated by using concentration inputs from different chemistry–transport models (CTMs) to the EVA system can vary up to a factor of 3 in Europe (12 models) and the United States (3 models). In Europe, the multi-model mean total number of premature deaths (acute and chronic) is calculated to be 414 000, while in the US, it is estimated to be 160 000, in agreement with previous global and regional studies. The economic valuation of these health impacts is calculated to be EUR 300 billion and 145 billion in Europe and the US, respectively. A subset of models that produce the smallest error compared to the surface observations at each time step against an all-model mean ensemble results in increase of health impacts by up to 30 % in Europe, while in the US, the optimal ensemble mean led to a decrease in the calculated health impacts by ~ 11 %.A total of 54 000 and 27 500 premature deaths can be avoided by a 20 % reduction of global anthropogenic emissions in Europe and the US, respectively. A 20 % reduction of North American anthropogenic emissions avoids a total of ~ 1000 premature deaths in Europe and 25 000 total premature deaths in the US. A 20 % decrease of anthropogenic emissions within the European source region avoids a total of 47 000 premature deaths in Europe. Reducing the east Asian anthropogenic emissions by 20 % avoids ~ 2000 total premature deaths in the US. These results show that the domestic anthropogenic emissions make the largest impacts on premature deaths on a continental scale, while foreign sources make a minor contribution to adverse impacts of air pollution.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.