Key Points• The combination of elotuzumab and an anti-PD-1 antibody leads to enhanced antitumor efficacy in mouse models.• Enhanced antitumor activity is likely due to the promotion of tumorinfiltrating NK and T-cell activity. In these mouse models, elotuzumab-g2a and anti-PD-1 combination treatment promoted tumor-infiltrating NK and CD8 1 T-cell activation, as well as increased intratumoral cytokine and chemokine release. These observations support the rationale for clinical investigation of elotuzumab/anti-PD-1 combination therapy in patients with MM.
Elotuzumab (Elo) is an IgG 1 monoclonal antibody targeting SLAMF7 (CS1, CRACC, and CD319), which is highly expressed on multiple myeloma (MM) cells, natural killer (NK) cells, and subsets of other leukocytes. By engaging with FcgRIIIA (CD16), Elo promotes potent NK cell-mediated antibody-dependent cellular cytotoxicity (ADCC) and macrophage-mediated antibody-dependent cellular phagocytosis (ADCP) toward SLAMF7 þ MM tumor cells. Relapsed/refractory MM patients treated with the combination of Elo, lenalidomide, and dexamethasone have improved progression-free survival. We previously showed that Elo enhances NK cell activity via a costimulation mechanism, independent of CD16 binding. Here, we further studied the effect of Elo on cytotoxicity of CD16-negative NK-92 cells. Elo, but not other SLAMF7 antibodies, uniquely enhanced cytotoxicity mediated by CD16-negative NK-92 cells toward SLAMF7 þ target cells. Furthermore, this CD16-independent enhancement of cytotoxicity required expression of SLAMF7 containing the full cytoplasmic domain in the NK cells, implicating costimulatory signaling. The CD16-independent costimulation by Elo was associated with increased expression of NKG2D, ICAM-1, and activated LFA-1 on NK cells, and enhanced cytotoxicity was partially reduced by NKG2D blocking antibodies. In addition, an Fc mutant form of Elo that cannot bind CD16 promoted cytotoxicity of SLAMF7 þ target cells by NK cells from most healthy donors, especially if previously cultured in IL2. We conclude that in addition to promoting NK cell-mediated ADCC (CD16-dependent) responses, Elo promoted SLAMF7-SLAMF7 interactions in a CD16-independent manner to enhance NK cytotoxicity toward MM cells.
Background Adoptive transfer of chimeric antigen receptor (CAR)-engineered T cells combined with checkpoint inhibition may prevent T cell exhaustion and improve clinical outcomes. However, the approach is limited by cumulative costs and toxicities. Methods To overcome this drawback, we created a CAR-T (RB-340-1) that unites in one product the two modalities: a CRISPR interference-(CRISPRi) circuit prevents programmed cell death protein 1 (PD-1) expression upon antigen-encounter. RB-340-1 is engineered to express an anti-human epidermal growth factor receptor 2 (HER2) CAR single chain variable fragment (scFv), with CD28 and CD3ζ co-stimulatory domains linked to the tobacco etch virus (TEV) protease and a single guide RNA (sgRNA) targeting the PD-1 transcription start site (TSS). A second constructs includes linker for activation of T cells (LAT) fused to nuclease-deactivated spCas9 (dCas9)-Kruppel-associated box (KRAB) via a TEV-cleavable sequence (TCS). Upon antigen encounter, the LAT-dCas9-KRAB (LdCK) complex is cleaved by TEV allowing targeting of dCas9-KRAB to the PD-1 gene TSS. Results Here, we show that RB-340-1 consistently demonstrated higher production of homeostatic cytokines, enhanced expansion of CAR-T cells in vitro, prolonged in vivo persistence and more efficient suppression of HER2+ FaDu oropharyngeal cancer growth compared to the respective conventional CAR-T cell product. Conclusions As the first application of CRISPRi toward a clinically relevant product, RB-340-1 with the conditional, non-gene editing and reversible suppression promotes CAR-T cells resilience to checkpoint inhibition, and their persistence and effectiveness against HER2-expressing cancer xenografts.
Background. We evaluated the significance of hypertension developing during vascular endothelial growth factor (VEGF) receptor tyrosine kinase inhibitor (VEGFR‐TKI) treatment and a group of cytokines and angiogenic factors (CAFs) in advanced non‐clear cell renal cell carcinoma (nccRCC) patients treated with sunitinib in a phase II study. Materials and Methods. Using multiplex assays, we analyzed the levels of 38 CAFs in plasma at baseline and after 4 weeks of sunitinib therapy. Sunitinib benefit was defined as a partial response or stable disease using the Response Evaluation Criteria in Solid Tumors lasting ≥4 months. Cox proportional hazards regression models were used to assess the associations among hypertension, CAFs, and progression‐free (PFS) and overall survival (OS). Results. Fifty‐seven patients were evaluable; 53 had baseline CAF levels available. The median PFS and OS were 2.9 months (95% confidence interval [CI], 1.4–5.5) and 16.8 months (95% CI, 10.7–27.4), respectively. Sunitinib benefit was observed in 21 patients (37%). However, 33 patients (60%) developed hypertension during treatment, although no association was found with survival or response. Elevated baseline soluble tumor necrosis factor (TNF) receptor I, interleukin‐8, growth‐regulated oncogene, transforming growth factor‐α, and VEGFR‐2 levels were associated with an increased risk of death on multivariate analysis. Conclusion. We found no association between the development of hypertension and survival or sunitinib benefit in advanced nccRCC. TNF and angiogenic/immunomodulatory mediators were identified for evaluation as markers of prognosis and VEGFR‐TKI benefit in future studies. Implications for Practice: The present study describes the first analysis of hypertension and a relatively large set of circulating cytokines and angiogenic factors in patients with advanced non‐clear cell renal cell carcinoma (nccRCC) treated with sunitinib. No association was found between hypertension and patient outcomes. However, a group of candidate circulating biomarkers was identified, in particular, those associated with tumor necrosis factor and CXCR1/2 signaling, with probable biological and clinical significance in nccRCC, warranting confirmation in future studies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.