SummaryIn recent years, it has become evident that olfaction is a fast sense, and millisecond short differences in stimulus onsets are used by animals to analyze their olfactory environment. In contrast, olfactory receptor neurons are thought to be relatively slow and temporally imprecise. These observations have led to a conundrum: how, then, can an animal resolve fast stimulus dynamics and smell with high temporal acuity? Using parallel recordings from olfactory receptor neurons in Drosophila, we found hitherto unknown fast and temporally precise odorant-evoked spike responses, with first spike latencies (relative to odorant arrival) down to 3 ms and with a SD below 1 ms. These data provide new upper bounds for the speed of olfactory processing and suggest that the insect olfactory system could use the precise spike timing for olfactory coding and computation, which can explain insects' rapid processing of temporal stimuli when encountering turbulent odor plumes.
In this work, we present a spiking neural network (SNN) based PID controller on a neuromorphic chip. On-chip SNNs are currently being explored in low-power AI applications. Due to potentially ultra-low power consumption, low latency, and high processing speed, on-chip SNNs are a promising tool for control of power-constrained platforms, such as Unmanned Aerial Vehicles (UAV). To obtain highly efficient and fast end-toend neuromorphic controllers, the SNN-based AI architectures must be seamlessly integrated with motor control. Towards this goal, we present here the first implementation of a fully neuromorphic PID controller. We interfaced Intel's neuromorphic research chip Loihi to a UAV, constrained to a single degree of freedom. We developed an SNN control architecture using populations of spiking neurons, in which each spike carries information about the measured, control, or error value, defined by the identity of the spiking neuron. Using this sparse code, we realize a precise PID controller. The P, I, and D gains of the controller are implemented as synaptic weights that can adapt according to an on-chip plasticity rule. In future work, these plastic synapses can be used to tune and adapt the controller autonomously.
In this paper, we investigate the use of ultra low-power, mixed signal analog/digital neuromorphic hardware for implementation of biologically inspired neuronal path integration and map formation for a mobile robot. We perform spiking network simulations of the developed architecture, interfaced to a simulated robotic vehicle. We then port the neuronal map formation architecture on two connected neuromorphic devices, one of which features on-board plasticity, and demonstrate the feasibility of a neuromorphic realization of simultaneous localization and mapping (SLAM).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.