Viral infections are historically very difficult to treat. Although imperfect and time-consuming to develop, we do have some conventional vaccine and therapeutic approaches to stop viral spreading. Most importantly, all of this takes significant time while viruses continue to wreak havoc on our healthcare system. Furthermore, viral infections are accompanied by a weakened immune system which is often overlooked in antiviral drug strategies and requires additional drug development. In this review, for the first time, we touch on some promising alternative approaches to treat viral infections, specifically those focused on the use of platform nanomaterials with antiviral peptides. In doing so, this review presents a timely discussion of how we need to change our old way of treating viruses into one that can quickly meet the demands of COVID-19, as well as future pandemic-causing viruses, which will come.
The fast-growing use of supramolecular hydrogelators as biomaterials for a variety of applications, ranging from wound healing to drug delivery to tissue engineering, has highlighted the importance of synthetic design over recent years. Here, we report a new class of nanosheet stereocomplexes
in aqueous solution and at physiological conditions (i. e., pH7.4), which are formed by physically mixing right- and left-handed tripeptide supramolecular hydrogelators without any external stimulus. Such tripeptides were obtained by incorporating either α-aminoisobutyric acid (Aib,
U) or alanine (Ala, A) at the C-terminus or middle position of known peptide hydrogelators containing naphthalene and two phenylalanine residues. For hydrogels of these peptides, our results show that their morphologies and physical properties changed upon mixing with the L- and D-forms of
the peptides forming suspension stereocomplexes. These interactions reduced molecular mobility by forming new structures with new properties and, therefore, increased the thermal stability of the compound promising for numerous medical applications.
Coronavirus disease (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has caused significant death, economic crisis, and the world to almost completely shut down. This present study focused on targeting the novel SARS-CoV-2 envelope protein, which has
not been frequently mutating, and the S protein with a much larger peptide capable of inhibiting virus-mammalian cell attraction. In doing so, molecular dynamics software was used here to model six peptides including: NapFFTLUFLTUTE, NapFFSLAFLTATE, NapFFSLUFLSUTE, NapFFTLAFLTATE, NapFFSLUFLSUSE,
and NapFFMLUFLMUME. Results showed that two of these completely hydrophobic peptides (NapFFTLUFLTUTE and NapFFMLUFLMUME) had a strong ability to bind to the virus, preventing its binding to a mammalian cell membrane, entering the cell, and replicating by covering many cell attachment sites
on SARS-CoV-2. Further cell modeling results demonstrated the low toxicity and suitable pharmacokinetic properties of both peptides making them ideal for additional in vitro and in vivo investigation. In this manner, these two peptides should be further explored for a wide range
of present and future COVID-19 therapeutic and prophylactic applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.