We propose a practical near real-time compression-based class-associative multiple target detection technique for color images. The size of the color images is reduced to its utmost ratio to speed up the processing time and to increase the storage capacity of the recognition system. A fringe-adjusted joint transform correlation technique is employed to successfully detect the compression-based multiple targets in colored images. In addition, to eliminate the false alarms and zero-order terms due to multiple desired and undesired objects in an input scene, we have used the shifted phase-encoded and the reference phase-encoded techniques. The performance of detecting the class-associative multiple targets for large compression ratios (up to 94%) and under strong noisy conditions (Gaussian and salt and pepper noises) is assessed through many computer simulations experiments. Furthermore, detecting small targets or even a small part of a target is presented for images occluded up to 90%.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.