Preparing a sample for analysis is a crucial step of many analytical procedures. The goal of sample preparation is to provide a representative, homogenous sample that is free of interferences and compatible with the intended analytical method. Green approaches to sample preparation require that the consumption of hazardous organic solvents and energy be minimized or even eliminated in the analytical process. While no sample preparation is clearly the most environmentally friendly approach, complete elimination of this step is not always practical. In such cases, the extraction techniques which use low amounts of solvents or no solvents are considered ideal alternatives. This paper presents an overview of green extraction procedures and sample preparation methodologies, briefly introduces their theoretical principles, and describes the recent developments in food, pharmaceutical, environmental and bioanalytical chemistry applications.
A simple, reliable, highly sensitive and selective spectrofluorimetric method has been developed for determination of certain aminoglycosides namely amikacin sulfate, tobramycin, neomycin sulfate, gentamicin sulfate, kanamycin sulfate and streptomycin sulfate. The method is based on the formation of a charge transfer complexes between these drugs and safranin in buffer solution of pH 8. The formed complexes were quantitatively extracted with chloroform under the optimized experimental conditions. These complexes showed an excitation maxima at 519-524 nm and emission maxima at 545-570 nm. The calibration plots were constructed over the range of 4-60 pg mL(-1) for amikacin, 4-50 pg mL(-1) for gentamicin, neomycin and kanamycin, 4-40 pg mL(-1) for streptomycin and 5-50 pg mL(-1) for tobramycin. The proposed method was successfully applied to the analysis of the cited drugs in dosage forms. The proposed method was validated according to ICH and USP guidelines with respect to specificity, linearity, accuracy, precision and robustness. The high sensitivity of the proposed method allowed determination of amikacin and gentamicin in spiked and real human plasma.
Parallel gradients in comprehensive multidimensional liquid chromatography enhance utilization of the separation space and the degree of orthogonality when the separation mechanisms are correlated.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations鈥揷itations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.