As unconventional reserves, oil shale deposits require additional oil recovery techniques to achieve favorable production levels. The efficiency of a shale reservoir development project is highly dependent on the application of enhanced oil recovery (EOR) techniques. There are many studies devoted to discrete investigations of each EOR method. Most of them claim that one particular method is particularly effective in increasing oil recovery. Despite the wealth of such research, it remains hard to say with certainty which technique would be the most effective when applied in the extraction of unconventional reserves. In this work, we aim to answer this question by means of a comparative study. Three EOR methods were applied and analyzed in the same environment, a single target objectan oil field in Western Siberia characterized by ultra-low permeability (0.03 mD on average) and high organic content. Methods involving huff-and-puff injection of a surfactant solution, hydrocarbon gas, and hot water were studied using numerical reservoir simulations based on preceding laboratory experiments. A single horizontal well having undergone nine-stage hydraulic fracturing was used as the field site model. The comparative calculations of cumulative oil production over an 8-year period revealed that the injection of hot (supercritical) water led to the highest oil recovery in the target shale reservoir. Each EOR method was implemented using the best operation scenario. All three cases resulted in an increase in cumulative oil production compared to the depletion mode, though the efficiency was distinctly different. Twenty-six percent more oil was obtained after hot water injection, 16% after hydrocarbon gas, and 12% after a surfactant solution. Simulation of a hot water huff-and-puff operation over a longer period (43 years) led to a level of oil production 3 times higher than depletion. The drawbacks of each EOR method on the shale site are discussed in the results. A possible solution was proposed for preventing the negative effects of heat loss and water blockage incurred from hot water injection. The comparative study concludes that hot water injection should lead to the highest volume of oil recovery. The conclusions drawn are suggested to be relevant for similar shale fields.
Gas injection has already proven to be an efficient shale oil recovery method successfully tested all around the world. However, gas-enhanced oil recovery methods have never been implemented or tested for the greatest Siberian shale oil formation yet. This article proposes numerical simulation of a hydrocarbon gas injection process into a horizontal well with multiple hydraulic fractures perforating Bazhenov shale oil formation in Western Siberia characterized by ultra-low permeability. A complex field-scale numerical study of gas injection for such a formation has never been performed before and is presented for the first time in our work. The hydrodynamic compositional simulation was performed utilizing a commercial simulator. A sensitivity study for different operating parameters including cycle times, bottom-hole pressures for the production and injection period, and injected gas composition was performed after the model was history matched with the available production data. Some uncertain reservoir properties such as relative permeability curves were also sensitized upon. Two different ways of accounting for multiple hydraulic fractures in the simulation model are presented and the simulation results from both models are compared and discussed. Eventually, huff-n-puff injection of a hydrocarbon gas resulted in a 34–117% increase in oil recovery depending on the fracture model.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.