Purpose The purpose of this paper is to examine the effects of denaturised rice bran (RB) and route of its incorporation during synthesis of urea-formaldehyde adhesive, on the performance of the resulting adhesive, especially viscosity, free-formaldehyde (HCHO) and quality of the produced bagasse-based composites, in comparison with those produced from commercial urea formaldehyde (UF) and RB-added UF. Design/methodology/approach The experiments were carried out using different denaturised RB at different percentages (1-5 per cent) and pH’s (9-11 per cent). These denaturised RB were incorporated at the last synthesis stage of UF synthesis process. The assessment was carried out on both the viscosity and environmental safety of the adhesive system, as well as the quality of the manufactured bagasse-based composites, of the particleboards (static bending, internal bond (IB) strength and water resistance properties), in comparison to commercial UF and RB added to UF. The performance of the adhesive system was evidenced by the thermogravimetric analysis and differential scanning calorimetry analyses. Findings The results showed that maximum static bending [modulus of rupture (MOR) and modulus of elasticity (MOE)], IB strength and water resistance properties of the resulted wood product accompanied the incorporating 5 per cent of the denaturised RB (pH = 9.0), at the last synthesised stage of UF synthesis process. Where, this synthesis process provided adhesive with viscosity nearly approaching to commercial UF adhesive, and reduced the free-HCHO of adhesive and board by approximately 56 and 49 per cent, respectively. For mechanical and water resistance properties, it provided board with 24.5 MPa MOR, 3,029 MPa MOE, 0.64 MPa IB, 11 per cent swelling (SW) and 20.5 per cent absorption. These properties fulfil the requirements of high grade particleboards American National Standard Institute (ANSI) A208.1, especially with respect to static bending values and water swelling property. Research limitations/implications Incorporating 5 per cent of pre-denaturised RB, at pH 9.0, in wet form, and in the last stage of synthesis UF, provided adhesive system with convenient viscosity together with lower free-HCHO and acceptable board properties, compared with that produced from commercial UF, or adding denaturised RB to already synthesised UF. For the mechanical (MOR, MOE and IB) and water resistance properties (SW per cent and absorption per cent) of the produced composite are complied the standard values of H-3 grade of particleboard. Practical implications Promising adhesive system is resulted from incorporating 5 per cent of pre-denaturised RB at pH 9.0, in wet form, during last stage of UF synthesis process. Social implications Incorporating the RB by-product of oil production to commercial UF or during synthesis of UF will be benefit for saving the healthy of wood co-workers, and motivating the wood mill to export its wood products. Originality/value The article provides a potential simple way to solve the drawback of increasing the viscosity of UF, as a result of adding RB, via incorporating the RB during synthesis process. The viscosity of the synthesised RB-modified UF approaches RB-free UF, and consequently the adhesive system easily penetrates through agro-fibres, and provides good bonding behaviour and high performance wood product (both quality and environmental by minimising formaldehyde emission or toxic gasses during board formation).
Purpose This paper aims to study the effect of hydrolysis route of hydroxypropyl cellulose (HPC) on its esterification performance as liquid crystal material. The assessment was carried out from the data of spectra (Fourier-transform infrared analysis [FTIR] and 1H-nuclear magnetic resonance [1H-NMR]), thermal stability as well as optical properties via forming ordered mesophases at lower concentration than HPC. Design/methodology/approach The HPC was hydrolyzed by hydrochloric acid-methanol at times 9 and 18 h, and the products were esterified by decanoyl chloride. The products of hydrolysis and the esterification were characterized by FTIR, NMR, nonisothermal analysis, thermo-gravimetric analysis (TGA) and polarizing microscope to evaluate the role of degree of substitution of HPC as a result of hydrolysis, on esterification degree, thermal stability and thermal and liquid crystal behavior of the final esterified HPC. Findings The pretreatment by acid hydrolysis of HPC was successful for synthesizing novel cholesteric hydroxypropyl cellulose ester. The data of FTIR and TGA thermal analysis proved that hydrolysis and esterification of HPC with the decanoyl chain significantly enhanced crystallinity of this cellulose derivative from 0.57 to (1.7–1.9). Moreover, they provided products with superior thermal stability than pure HPC, as noticed from increasing the activation energy of degradation (Ea) from 514.3 to 806.2 kJ/mol. The NMR measurement proved that hydrolysis of HPC for 9 and 18 h decreased the degree of substitution from 3 to 2.1 and 1.3, respectively. Moreover, the esterified HPC showed a promising birefringence texture (chiral nematic) besides decreasing the critical concentration from 30% for HPC to 10% for the esterified unhydrolyzed HPC, while superior decreasing to 1–5% was observed for the esterified hydrolyzed HPC. Research limitations/implications There are two stages for preparation of decanoyl ester hydroxypropyl cellulose. At the first stage, HPC was treated by hydrochloric acid-methanol in ratio 1:10 at times 9 and18 h. At the second stage, HPC and hydrolyzed HPC were refluxed with decanoyl chloride (1:6) in presence of nitrogen atmosphere. The final product was precipitated by distilled water. Practical implications There are two stages for preparation of decanoyl ester hydroxypropyl cellulose. At the first stage, HPC was treated by hydrochloric acid-methanol in ratio 1:10 at times 9 and18 h. At the second stage, HPC and hydrolyzed HPC were refluxed with decanoyl chloride (1:6) in presence of nitrogen atmosphere. The final product was precipitated by distilled water. Originality/value The novelty of this work was focused on enhancing the crystallinity, thermal stability and liquid crystal behavior of esterified HPC, via decreasing the degree of substitution and consequently the type of OH group subjected to esterification. The decanoyl ester formation from the hydrolyzed hydroxypropyl cellulose is able to form ordered mesophases at even low concentration (promising birefringence texture at concentrations 1–5%). It is worthy to notice that the investigated route is able to omit the role of graphene oxide in promoting the liquid crystal behavior of HPC, as it hasn't any effect on critical concentration. This work will promote the use of HPC in technological applications, e.g. high modulus fibers and electronic devices.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.