Prdx6 (peroxiredoxin 6), a bifunctional protein with both GSH peroxidase and PLA2 (phospholipase A2) [aiPLA2 (acidic calcium-independent PLA2)] activities, is responsible for the metabolism of lung surfactant phospholipids. We propose that the aiPLA2 activity of the enzyme is regulated through phosphorylation. Incubation of isolated rat alveolar type II cells (AECII) with PMA, a PKC (protein kinase C) agonist, had no effect on Prdx6 expression but led to ~75 % increase in aiPLA2 activity that was abolished by pretreatment of cells with the MAPK (mitogen-activated protein kinase) inhibitors, SB202190 or PD98059. Prdx6 phosphorylation after incubation of AECII with PMA was demonstrated by autoradiography after immunoprecipitation with either anti-phosphothreonine or -phosphoserine antibodies. In vitro, several active isoforms of ERK (extracellular-signal-regulated kinase) and p38 phosphorylated Prdx6, resulting in an 11-fold increase in aiPLA2 activity. The increased activity was calcium-independent and was abolished by the aiPLA2 inhibitors, surfactant protein A and hexadecyl-3-trifluorethylglycero-sn-2-phospho-methanol (MJ33). The peroxidase activity of Prdx6 was unaffected by phosphorylation. Mass spectroscopic analysis of in vitro phosphorylated Prdx6 showed a unique phosphorylation site at Thr-177 and mutation of this residue abolished protein phosphorylation and the increase in MAPK-mediated activity. These results show that the MAPKs can mediate phosphorylation of Prdx6 at Thr-177 with a consequent marked increase in its aiPLA2 activity.
Peroxiredoxin 6 (Prdx6) differs from other mammalian peroxiredoxins both in its ability to reduce phospholipid hydroperoxides at neutral pH and in having phospholipase A 2 (PLA 2 ) activity that is maximal at acidic pH. We previously showed an active site C47 for peroxidase activity and a catalytic triad S32-H26-D140 necessary for binding of phospholipid and PLA 2 activity. This study evaluated binding of reduced and oxidized phospholipid hydroperoxide to Prdx6 at cytosolic pH. Incubation of recombinant Prdx6 with 1-palmitoyl-2-linoleoyl-sn-glycero-3-phosphocholine hydroperoxide (PLPCOOH) resulted in peroxidase activity, cys47 oxidation as detected with Prdx6-SO 2(3) antibody, and a marked shift in the Prdx6 melting temperature by circular dichroism analysis indicating that PLPCOOH is a specific substrate for Prdx6. Preferential Prdx6 binding to oxidized liposomes was detected by changes in DNS-PE or bis-Pyr fluorescence and by ultrafiltration. Site-specific mutation of S32 or H26 in Prdx6 abolished binding while D140 mutation had no effect. Treatment of A549 cells with peroxides led to lipid peroxidation and translocation of Prdx6 from the cytosol to the cell membrane. Thus, the pH specificity for the two enzymatic activities of Prdx6 can be explained by the differential binding kinetics of the protein; Prdx6 binds to reduced phospholipid at acidic pH but at cytosolic pH binds only phospholipid that is oxidized compatible with a role for Prdx6 in the repair of peroxidized cell membranes.
Peroxiredoxin 6 (Prdx6) is a unique antioxidant enzyme that can reduce phospholipid and other hydroperoxides. A549 cells, a human lung-derived cell line, express both Prdx6 and Nrf2, a transcription factor that binds to antioxidant response elements (AREs) and promotes expression of antioxidant genes. Treatment of A549 cells with 500μM H2O2 increased Prdx6 mRNA levels 2.5 fold while treatment with 400μM H2O2 or 200μM tert-butylhydroquinone (tBHQ) triggered a corresponding 2.5 fold increase in reporter gene activity in A549 cells transfected with the pSEAP2-Basic vector (BD, Bioscience), containing 1524 nucleotides of the human Prdx6 promoter region. Deletion of a consensus ARE sequence present between positions 357 and 349 before the start of transcription led to a striking decrease in both basal and H2O2 or tBHQ-induced activation in A549 cells and H2O2-induced activation in primary rat alveolar type II cells. Co-transfection with Nrf2 stimulated the Prdx6 promoter in an ARE-dependent manner, while it was negatively regulated by Nrf3. siRNA targeting Nrf2 down-regulated reporter gene expression whereas siRNA targeting the Nrf2 repressor, Keap1, up-regulated it. Binding of Nrf2 to the ARE sequence in chromatin was confirmed by PCR following chromatin immunoprecipitation. These data demonstrate that the ARE within the Prdx6 promoter is a key regulator of basal transcription of the Prdx6 gene and of its inducibility under conditions of oxidative stress.
) binds to alveolar type II cells through a specific high-affinity cell membrane receptor, although the molecular nature of this receptor is unclear. In the present study, we have identified and characterized an SP-A cell surface binding protein by utilizing two chemical cross-linkers: profound sulfo-SBED protein-protein interaction reagent and dithiobis(succinimidylpropionate) (DSP). Sulfo-SBED-biotinylated SP-A was cross-linked to the plasma membranes isolated from rat type II cells, and the biotin label was transferred from SP-A to its receptor by reduction. The biotinylated SP-A-binding protein was identified on blots by using streptavidin-labeled horseradish peroxidase. By using DSP, we cross-linked SP-A to intact mouse type II cells and immunoprecipitated the SP-A-receptor complex using anti-SP-A antibody. Both of the cross-linking approaches showed a major band of 63 kDa under reduced conditions that was identified as the rat homolog of the human type II transmembrane protein p63 (CKAP4/ERGIC-63/ CLIMP-63) by matrix-assisted laser desorption ionization and nanoelectrospray tandem mass spectrometry of tryptic fragments. Thereafter, we confirmed the presence of p63 protein in the cross-linked SP-A-receptor complex by immunoprobing with p63 antibody. Coimmunoprecipitation experiments and functional assays confirmed specific interaction between SP-A and p63. Antibody to p63 could block SP-A-mediated inhibition of ATP-stimulated phospholipid secretion. Both intracellular and membrane localized pools of p63 were detected on type II cells by immunofluorescence and immunobloting. p63 colocalized with SP-A in early endosomes. Thus p63 closely interacts with SP-A and may play a role in the trafficking or the biological function of the surfactant protein.lung; surfactant secretion; cross-linking; immunolocalization PULMONARY SURFACTANT IS A complex mixture of phospholipids and proteins. The major protein component, surfactant protein-A (SP-A), is a 34-to 36-kDa member of the calciumdependent lectin family of proteins that facilitates the surface tension-lowering properties of surfactant phospholipids in the alveolus; regulates surfactant phospholipid synthesis, secretion, and recycling; and also plays an important role in pulmonary host defense (18). The mechanism of SP-A binding to lung type II cells is not completely understood, yet it appears to be critical for the cell-associated functions of SP-A. Binding of SP-A to type II cells was found to be both saturable and specific, suggesting that this interaction is mediated through a receptor on the cell surface (24, 55).Thus far, investigators have identified SP-A receptor(s) by utilizing either anti-idiotypic antibodies (43, 46) or SP-A affinity column chromatography (9, 21). Using an idiotypic approach, one group has identified three proteins with apparent molecular mass values of 30, 52, and 60 kDa (44), and the 30-kDa protein was shown to be associated with the regulation of secretagogue-stimulated surfactant secretion (45, 46). On the other hand, another group ...
endothelial growth factor-induced secretion of fibronectin is ERK dependent.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.