A note on versions:The version presented here may differ from the published version or from the version of record. If you wish to cite this item you are advised to consult the publisher's version. Please see the repository url above for details on accessing the published version and note that access may require a subscription. AbstractWe present an internal formalisation of a type heory with dependent types in Type Theory using a special case of higher inductive types from Homotopy Type Theory which we call quotient inductive types (QITs). Our formalisation of type theory avoids referring to preterms or a typability relation but defines directly well typed objects by an inductive definition. We use the elimination principle to define the set-theoretic and logical predicate interpretation. The work has been formalized using the Agda system extended with QITs using postulates.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.