We experimentally implement a system of cavity optomagnonics, where a sphere of ferromagnetic material supports whispering gallery modes (WGMs) for photons and the magnetostatic mode for magnons. We observe pronounced nonreciprocity and asymmetry in the sideband signals generated by the magnon-induced Brillouin scattering of light. The spin-orbit coupled nature of the WGM photons, their geometrical birefringence, and the time-reversal symmetry breaking in the magnon dynamics impose the angular-momentum selection rules in the scattering process and account for the observed phenomena. The unique features of the system may find interesting applications at the crossroad between quantum optics and spintronics.
Coherent conversion of microwave and optical photons in the single-quantum level can significantly expand our ability to process signals in various fields. Efficient up-conversion of a feeble signal in the microwave domain to the optical domain will lead to quantum-noise-limited microwave amplifiers. Coherent exchange between optical photons and microwave photons will also be a stepping stone to realize long-distance quantum communication. Here we demonstrate bidirectional and coherent conversion between microwave and light using collective spin excitations in a ferromagnet. The converter consists of two harmonic oscillator modes, a microwave cavity mode and a magnetostatic mode called Kittel mode, where microwave photons and magnons in the respective modes are strongly coupled and hybridized. An itinerant microwave field and a traveling optical field can be coupled through the hybrid system, where the microwave field is coupled to the hybrid system through the cavity mode, while the optical field addresses the hybrid system through the Kittel mode via Faraday and inverse Faraday effects. The conversion efficiency is theoretically analyzed and experimentally evaluated. The possible schemes for improving the efficiency are also discussed.
A ferromagnetic sphere can support optical vortices in the form of whispering gallery modes and magnetic quasivortices in the form of magnetostatic modes with nontrivial spin textures. These vortices can be characterized by their orbital angular momenta. We experimentally investigate Brillouin scattering of photons in the whispering gallery modes by magnons in the magnetostatic modes, zeroing in on the exchange of the orbital angular momenta between the optical vortices and magnetic quasivortices. We find that the conservation of the orbital angular momentum results in different nonreciprocal behavior in the Brillouin light scattering. New avenues for chiral optics and optospintronics can be opened up by taking the orbital angular momenta as a new degree of freedom for cavity optomagnonics.
Silicon photonics is a powerful platform for implementing large-scale photonic integrated circuits (PICs), because of its compatibility with mature complementary-metal-oxide-semiconductor (CMOS) technology. Exploiting silicon-based PICs for quantum photonic information processing (or the so-called silicon quantum photonics) provides a promising pathway for large-scale quantum applications. For the development of scalable silicon quantum PICs, a major challenge is integrating on-silicon quantum light sources that deterministically emit single photons. In this regard, the use of epitaxial InAs/GaAs quantum dots (QDs) is a very promising approach, because of their capability of deterministic single-photon emission with high purity and indistinguishability. However, the required hybrid integration is inherently difficult and often lacks the compatibility with CMOS processes. Here, we demonstrate a QD single-photon source (SPS) integrated on a glassclad silicon photonic waveguide processed by a CMOS foundry. Hybrid integration is performed using transfer printing, which enables us to integrate heterogeneous optical components in a simple pick-and-place manner and thus assemble them after the entire CMOS process is completed. We observe single-photon emission from the integrated QD and its efficient coupling into the silicon waveguide. Our transfer-printing-based approach is fully compatible with CMOS back-end processes, and thus will open the possibility for realizing large-scale quantum PICs that leverage CMOS technology. _____________________________ a)
We demonstrate fast two-qubit gates using a parity-violated superconducting qubit consisting of a capacitively shunted asymmetric Josephson-junction loop under a finite magnetic flux bias. The second-order nonlinearity manifesting in the qubit enables the interaction with a neighboring single-junction transmon qubit via firstorder interqubit sideband transitions with Rabi frequencies up to 30 MHz. Simultaneously, the unwanted static longitudinal (ZZ) interaction is eliminated with ac Stark shifts induced by a continuous microwave drive near resonant to the sideband transitions. The average fidelities of the two-qubit gates are evaluated with randomized benchmarking as 0.971, 0.958, and 0.962 for CZ, iSWAP, and SWAP gates, respectively.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.