In this research, geological and hydrogeological studies were conducted to determine the source of high arsenic levels in the surficial aquifer of Simav Plain, Kutahya, Turkey. One of the two aquifer systems isolated in the study area was a deep confined aquifer composed of fractured metamorphic rocks that supply hot geothermal fluid. The other one was an unconfined alluvial aquifer, which developed within the graben area as a result of sediment deposition from the highlands. This aquifer serves as the primary water resource within the plain. A water quality sampling campaign conducted in 27 wells drilled in the surficial aquifer has yielded an average arsenic concentration of 99.1 µg/L with a maximum of 561.5 µg/L. Rock and sediment samples supported the fact that local metamorphic rocks contained significant amounts of sulfur minerals where arsenic-containing lenses are present inside. It was also determined that a Cu-Pb-Zn mine was operated in the past in the same formation. Arsenic-containing wastes of this mine were deposited near the Simav district center in an uncontrolled manner. This mined formation had arsenic levels reaching to levels as high as 660 mg/ kg, which was found out to be the highest arsenic level in the area. Another potential arsenic source in the study area was the geothermal fluid that was used extensively in three geothermal fields with levels reaching to levels as high as 594 µg/L. Uncontrolled discharges of waste geothermal fluid and overexploitation of groundwater were also found to contribute to arsenic pollution in surface/subsurface waters of the plain. Thus, natural sources and anthropogenic influences of arsenic were found to create high concentrations in local water reserves of the area and influence human health. Consequently, death statistics from the 1995 to 2005 period collected from the area has revealed increased rates of gastrointestinal cancers above Turkish average.
Total evaporation (TE) is an analysis technique for the measurement of uranium isotopic abundance ratios using thermal ionization mass spectrometry (TIMS). A small mass dependent bias observed in this analytical technique is determined by an external correction factor using well characterized standards (most often certified reference materials, CRMs). The technique had been demonstrated to be highly precise and accurate for major isotope-amount ratio measurements of uranium and plutonium. We compare the performance of the TE analytical technique for uranium isotope ratio measurements on two TIMS instruments (TRITON and MAT261) using well characterized CRMs from NBL and investigate the dependence of the instrumental mass bias on the amount of sample analyzed. It is concluded that the mass bias during a TIMS uranium isotopic analysis by TE is independent of the amount of material analyzed. Unlike the major ratio, minor isotope ratio measurements by TE are biased high due to peaktailing from the major isotopes. The biases in the minor isotope ratio data using TE are evaluated using well characterized NBL CRMs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.