Leukemia is a fatal cancer and has two main types: Acute and chronic. Each type has two more subtypes: Lymphoid and myeloid. Hence, in total, there are four subtypes of leukemia. This study proposes a new approach for diagnosis of all subtypes of leukemia from microscopic blood cell images using convolutional neural networks (CNN), which requires a large training data set. Therefore, we also investigated the effects of data augmentation for an increasing number of training samples synthetically. We used two publicly available leukemia data sources: ALL-IDB and ASH Image Bank. Next, we applied seven different image transformation techniques as data augmentation. We designed a CNN architecture capable of recognizing all subtypes of leukemia. Besides, we also explored other well-known machine learning algorithms such as naive Bayes, support vector machine, k-nearest neighbor, and decision tree. To evaluate our approach, we set up a set of experiments and used 5-fold cross-validation. The results we obtained from experiments showed that our CNN model performance has 88.25% and 81.74% accuracy, in leukemia versus healthy and multiclass classification of all subtypes, respectively. Finally, we also showed that the CNN model has a better performance than other wellknown machine learning algorithms.
Alzheimer's disease is a brain disease that causes impaired cognitive abilities in memory, concentration, planning, and speaking. Alzheimer's disease is defined as the most common cause of dementia and changes different parts of the brain. Neuroimaging, cerebrospinal fluid, and some protein abnormalities are commonly used as clinical diagnostic biomarkers. In this study, neuroimaging biomarkers were applied for the diagnosis of Alzheimer's disease and dementia as a noninvasive method. Structural magnetic resonance (MR) brain images were used as input of the predictive model. T1 weighted volumetric MR images were reduced to two-dimensional space by several preprocessing methods for three different projections. Convolutional neural network (CNN) models took preprocessed brain images, and the training and testing of the CNN models were carried out with two different data sets. The CNN models achieved accuracy values around 0.8 for diagnosis of both Alzheimer's disease and mild cognitive impairment. The experimental results revealed that the diagnosis of patients with mild cognitive impairment was more difficult than that of patients with Alzheimer's disease. The proposed deep learning-based model might serve as an efficient and practical diagnostic tool when MRI data are integrated with other clinical tests.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.