Study Design. Retrospective analysis of prospectively collected data. Objective. To report the follow-up curve behaviors in different Sanders staging groups. Summary of Background Data. Vertebral body tethering (VBT) is a growth modulation technique that allows gradual spontaneous follow-up curve correction as the patient grows. There is a lack of scientific evidence regarding appropriate patient selection and timing of implantation. Methods. Patients were grouped into five as: Sanders 1, 2, 3, 4–5, and 6–7. Data were collected preoperatively, at the day before discharge, and at each follow-up. Outcome measures were pulmonary and mechanical complications, readmission, and reoperation rates. Demographic, perioperative, clinical, radiographic, and complication data were compared using Fisher–Freeman–Halton exact tests for categorical variables and Kruskal-Wallis tests for the continuous variables. Results. Thirty-one (29 F, 2 M) consecutive patients with a minimum of 12 months of follow-up were included. The mean age at surgery was 12.1 (10–14). The mean follow-up was 27.1 (12–62) months. The mean preoperative main thoracic curve magnitude was 47° ± 7.6°. For all curves, preoperative and first erect curve magnitudes, bending flexibility, and operative correction percentages were similar between groups (for all comparisons, P > 0.05). The median height gained during follow-up was different between groups (P < 0.001), which was reflected into median curve correction during follow-up. Total curve correction percentage was different between groups (P = 0.009). Four (12.9%) patients had pulmonary and six (19.4%) had mechanical complications. One (3.2%) patient required readmission and two (6.5%) required reoperation. Occurrence of pulmonary complications was similar in Sanders groups (P = 0.804), while mechanical complications and overcorrection was significantly higher in Sanders 2 patients (P = 0.002 and P = 0.018). Conclusion. Follow-up curve behavior after VBT is different in patients having different Sanders stages. Sanders 2 patients experienced more overcorrection, thus timing and/or correction should be adjusted, since Sanders 3, 4, and 5 patients displayed a lesser risk of mechanical complications. Level of Evidence: 3.
Case series, Level IV.
Cartilage defects are a source of pain, immobility, and reduced quality of life for patients who have acquired these defects through injury, wear, or disease. The avascular nature of cartilage tissue adds to the complexity of cartilage tissue repair or regeneration efforts. The known limitations of using autografts, allografts, or xenografts further add to this complexity. Autologous chondrocyte implantation or matrix-assisted chondrocyte implantation techniques attempt to introduce cultured cartilage cells to defect areas in the patient, but clinical success with these are impeded by the avascularity of cartilage tissue. Biodegradable, synthetic scaffolds capable of supporting local cells and overcoming the issue of poor vascularization would bypass the issues of current cartilage treatment options. In this study, we propose a biodegradable, tri-layered (poly(glycolic acid) mesh/poly(l-lactic acid)-colorant tidemark layer/collagen Type I and ceramic microparticle-coated poly(l-lactic acid)-poly(ϵ-caprolactone) monolith) osteochondral plug indicated for the repair of cartilage defects. The porous plug allows the continual transport of bone marrow constituents from the subchondral layer to the cartilage defect site for a more effective repair of the area. Assessment of the in vivo performance of the implant was conducted in an ovine model (n = 13). In addition to a control group (no implant), one group received the implant alone (Group A), while another group was supplemented with hyaluronic acid (0.8 mL at 10 mg/mL solution; Group B). Analyses performed on specimens from the in vivo study revealed that the implant achieves cartilage formation within 6 months. No adverse tissue reactions or other complications were reported. Our findings indicate that the porous biocompatible implant seems to be a promising treatment option for the cartilage repair.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.