Thoracic aortic aneurysm, as occurs in Marfan syndrome, is generally asymptomatic until dissection or rupture, requiring surgical intervention as the only available treatment. Here, we show that nitric oxide (NO) signaling dysregulates actin cytoskeleton dynamics in Marfan Syndrome smooth muscle cells and that NO-donors induce Marfan-like aortopathy in wild-type mice, indicating that a marked increase in NO suffices to induce aortopathy. Levels of nitrated proteins are higher in plasma from Marfan patients and mice and in aortic tissue from Marfan mice than in control samples, indicating elevated circulating and tissue NO. Soluble guanylate cyclase and cGMP-dependent protein kinase are both activated in Marfan patients and mice and in wild-type mice treated with NO-donors, as shown by increased plasma cGMP and pVASP-S239 staining in aortic tissue. Marfan aortopathy in mice is reverted by pharmacological inhibition of soluble guanylate cyclase and cGMP-dependent protein kinase and lentiviral-mediated Prkg1 silencing. These findings identify potential biomarkers for monitoring Marfan Syndrome in patients and urge evaluation of cGMP-dependent protein kinase and soluble guanylate cyclase as therapeutic targets.
Motivation
Protein function is intrinsically linked to native dynamics, but the systematic characterization of functionally relevant dynamics remains elusive besides specific examples. Here we exhaustively characterize three types of dynamical couplings between protein residues: co-directionality (moving along collinear directions), coordination (small fluctuations of the interatomic distance) and deformation (the extent by which perturbations applied at one residue modify the local structure of the other one), which we analytically compute through the torsional network model.
Results
We find that ligand binding sites are characterized by large within-site coordination and co-directionality, much larger than expected for generic sets of residues with equivalent sequence distances. In addition, catalytic sites are characterized by high coordination couplings with other residues in the protein, supporting the view that the overall protein structure facilitates the catalytic dynamics. The binding sites of allosteric effectors are characterized by comparably smaller coordination and higher within-site deformation than other ligands, which supports their dynamic nature. Allosteric inhibitors are coupled to the active site more frequently through deformation than through coordination, while the contrary holds for activators. We characterize the dynamical couplings of the sodium-dependent Leucine transporter protein (LeuT). The couplings between and within sites progress consistently along the transport cycle, providing a mechanistic description of the coupling between the uptake and release of ions and substrate, and they highlight qualitative differences between the wild-type and a mutant for which chloride is necessary for transport.
Availability and implementation
The program tnm is freely available at https://github.com/ugobas/tnm
Supplementary information
Supplementary data are available at Bioinformatics online.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.