In quantum field theory, particle creation occurs, in general, when an intense external field, such as an electromagnetic field, breaks time translational invariance. This leads to an ambiguity in the definition of the vacuum state. In cosmological backgrounds this ambiguity has been reduced by imposing that the quantization preserves the symmetries of the system and that the dynamics is unitarily implemented. In this work, we apply these requirements to the quantization of a massive charged fermionic field coupled to a classical time-dependent homogeneous electric field, extending previous studies done for a scalar field. We characterize the quantizations fulfilling the criteria above and we show that they form a unique equivalence class of unitarily related quantizations, which provide a well-defined number of created particles at all finite times.
States of low energy in cosmology minimise the energy density when smeared in a chosen time interval. We extend such construction to generic homogeneous (possibly anisotropic) particle creation settings. Focusing on the Schwinger effect, we study the role played by the support of the smearing function and identify the vacua obtained in the limiting cases of small and large time intervals. We also analyse the spectral properties of the power spectrum and the number of created particles, which are complementary in characterising the vacuum, and investigate the multipolar contributions coming from the anisotropies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.