Ligands of CCR5, the major coreceptor of HIV-1, costimulate T lymphocyte activation. However, the full impact of CCR5 expression on T cell responses remains unknown. Here, we show that compared with CCR5 ؉/؉ , T cells from CCR5 ؊/؊ mice secrete lower amounts of IL-2, and a similar phenotype is observed in humans who lack CCR5 expression (CCR5-⌬32/⌬32 homozygotes) as well as after Ab-mediated blockade of CCR5 in human T cells genetically intact for CCR5 expression. Conversely, overexpression of CCR5 in human T cells results in enhanced IL-2 production. CCR5 surface levels correlate positively with IL-2 protein and mRNA abundance, suggesting that CCR5 affects IL-2 gene regulation. Signaling via CCR5 resulted in NFAT transactivation in T cells that was blocked by Abs against CCR5 agonists, suggesting a link between CCR5 and downstream pathways that influence IL-2 expression. Furthermore, murine T cells lacking CCR5 had reduced levels of intranuclear NFAT following activation. Accordingly, CCR5 expression also promoted IL-2-dependent events, including CD25 expression, STAT5 phosphorylation, and T cell proliferation. We therefore suggest that by influencing a NFAT-mediated pathway that regulates IL-2 production and IL-2-dependent events, CCR5 may play a critical role in T cell responses. In accord with our prior inferences from geneticepidemiologic studies, such CCR5-dependent responses might constitute a viral entry-independent mechanism by which CCR5 may influence HIV-AIDS pathogenesis.
Background Despite suppression of the human immunodeficiency virus type 1(HIV-1) load by highly active antiretroviral therapy (HAART), recovery of CD4+ T cell counts can be impaired. We investigated whether this impairment may be associated with hyporesponsiveness of T cells to γ-chain (γc) cytokines known to influence T cell homeostasis. Methods The responsiveness of T cells to interleukin (IL)-2, IL-7, and IL-15 was determined by assessing cytokine-induced phosphorylation of the signal transducer and activator of transcription 5 (STAT5) in peripheral T cells obtained from 118 HIV-positive subjects and 13 HIV-negative subjects. Results The responsiveness of T cells to interleukin (IL)-7 but not to IL-2 or IL-15 was lower among HIV-positive subjects than among HIV-negative subjects. Among subjects with viral load suppression, the degree of IL-7 responsiveness (1) correlated with naive CD4+ T cell counts and was a better immune correlate of the prevailing CD4+ T cell count than were levels of human leukocyte antigen-DR1 or programmed death-1, which are predictors of T cell homeostasis during HIV infection; and (2) was greater in subjects with complete (i.e., attainment of ≥500 CD4+ T cells/mm3 ≥5 years after initiation of HAART) versus incomplete immunologic responses. The correlation between plasma levels of IL-7 and CD4+ T cell counts during HAART was maximal in subjects with increased IL-7 responsiveness. Conclusions Responsiveness of T cells to IL-7 is associated with higher CD4+ T cell counts during HAART and thus may be a determinant of the extent of immune reconstitution.
T-cell expression levels of CC chemokine receptor 5 (CCR5) are a critical determinant of HIV/AIDS susceptibility, and manifest wide variations (i) between T-cell subsets and among individuals and (ii) in T-cell activation-induced increases in expression levels. We demonstrate that a unifying mechanism for this variation is differences in constitutive and T-cell activation-induced DNA methylation status of CCR5 cis-regulatory regions (cis-regions). Commencing at an evolutionarily conserved CpG (CpG −41), CCR5 cis-regions manifest lower vs. higher methylation in T cells with higher vs. lower CCR5 levels (memory vs. naïve T cells) and in memory T cells with higher vs. lower CCR5 levels. HIV-related and in vitro induced T-cell activation is associated with demethylation of these cis-regions. CCR5 haplotypes associated with increased vs. decreased gene/surface expression levels and HIV/AIDS susceptibility magnify vs. dampen T-cell activation-associated demethylation. Methylation status of CCR5 intron 2 explains a larger proportion of the variation in CCR5 levels than genotype or T-cell activation. The ancestral, protective CCR5-HHA haplotype bears a polymorphism at CpG −41 that is (i) specific to southern Africa, (ii ) abrogates binding of the transcription factor CREB1 to this cis-region, and (iii) exhibits a trend for overrepresentation in persons with reduced susceptibility to HIV and disease progression. Genotypes lacking the CCR5-Δ32 mutation but with hypermethylated cis-regions have CCR5 levels similar to genotypes heterozygous for CCR5-Δ32. In HIV-infected individuals, CCR5 cis-regions remain demethylated, despite restoration of CD4+ counts (≥800 cells per mm 3 ) with antiretroviral therapy. Thus, methylation content of CCR5 cis-regions is a central epigenetic determinant of T-cell CCR5 levels, and possibly HIV-related outcomes.HIV | CCR5 | methylation | T-cell activation | polymorphism C C chemokine receptor 5 (CCR5) is the major coreceptor for T-cell entry of HIV-1 (1). CCR5 levels on T cells influence HIV acquisition, disease progression rates, viral load, and immune recovery during antiretroviral therapy (ART), among other traits (1-4) (discussed in ref. 5). In these instances, lower CCR5 levels correlate with beneficial outcomes. Polymorphisms in the ORF and cis-regulatory regions (cis-regions) of CCR5 that correlate with higher vs. lower surface and/or gene expression levels are associated with increased vs. decreased HIV/AIDS risk and immune recovery (4-12). Classic examples are homozygosity Significance Levels of CC chemokine receptor 5 (CCR5) on T cells are a critical factor influencing HIV/AIDS susceptibility. DNA methylation is an epigenetic feature associated with lower gene expression. Here we show that the DNA methylation status of CCR5 cisregulatory regions (cis-regions) correlates inversely with CCR5 levels on T cells. T-cell activation induces demethylation of CCR5 cis-regions, upregulating CCR5 expression. Higher vs. lower sensitivity of CCR5 cis-regions to undergoing T-cell activationinduced...
Some people remain healthier throughout life than others but the underlying reasons are poorly understood. Here we hypothesize this advantage is attributable in part to optimal immune resilience (IR), defined as the capacity to preserve and/or rapidly restore immune functions that promote disease resistance (immunocompetence) and control inflammation in infectious diseases as well as other causes of inflammatory stress. We gauge IR levels with two distinct peripheral blood metrics that quantify the balance between (i) CD8+ and CD4+ T-cell levels and (ii) gene expression signatures tracking longevity-associated immunocompetence and mortality-associated inflammation. Profiles of IR metrics in ~48,500 individuals collectively indicate that some persons resist degradation of IR both during aging and when challenged with varied inflammatory stressors. With this resistance, preservation of optimal IR tracked (i) a lower risk of HIV acquisition, AIDS development, symptomatic influenza infection, and recurrent skin cancer; (ii) survival during COVID-19 and sepsis; and (iii) longevity. IR degradation is potentially reversible by decreasing inflammatory stress. Overall, we show that optimal IR is a trait observed across the age spectrum, more common in females, and aligned with a specific immunocompetence-inflammation balance linked to favorable immunity-dependent health outcomes. IR metrics and mechanisms have utility both as biomarkers for measuring immune health and for improving health outcomes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.