Circadian rhythms refer to biologic processes that oscillate with a period of approximately 24 hours. These rhythms are sustained by a molecular clock and provide a temporal matrix that ensures the coordination of homeostatic processes with the periodicity of environmental challenges. We demonstrate the circadian molecular clock controls the expression and function of toll like receptor 9 (TLR9). In a vaccination model using TLR9 ligand as adjuvant, mice immunized at the time of enhanced TLR9 responsiveness presented weeks later with an improved adaptive immune response. In a TLR9-dependent mouse model of sepsis, we found that disease severity was dependent on the timing of sepsis induction, coinciding with the daily changes in TLR9 expression and function. These findings unveil a direct molecular link between the circadian and innate immune systems with important implications for immunoprophylaxis and immunotherapy.
The past decade has seen an explosion in research focusing on innate immunity. Through a wide range of mechanisms including phagocytosis, intracellular killing, and activation of pro-inflammatory or antiviral cytokine production via pattern recognition receptors, the cells of the innate immune system initiate and support adaptive immunity. The effects of aging on innate immune responses remain incompletely understood, particularly in humans. Here, we review advances in the study of human immunosenescence in the diverse cells of the innate immune system, including neutrophils, monocytes, macrophages, NK and NKT cells, and dendritic cells—with a focus on consequences for the response to infection or vaccination in old age.
West Nile virus (WNV), a mosquito-borne flavivirus, has recently emerged in North America, and the elderly are particularly susceptible to severe neurological disease and death from infection with this virus. We have investigated the innate immune response of primary human macrophages to WNV in vitro and have found significant differences between the responsiveness of macrophages derived from younger donors and that from older donors. Binding of the glycosylated WNV envelope protein to the C-type lectin dendritic cell-specific intercellular adhesion molecule 3 (ICAM3) grabbing nonintegrin (DC-SIGN) leads to a reduction in the expression of Toll-like receptor 3 (TLR3) in macrophages from young donors via the signal transducer and activator of transcription 1 (STAT1)-mediated pathway. This signaling is impaired in the elderly, and the elevated levels of TLR3 result in an elevation of cytokine levels. This alteration of the innate immune response with aging may contribute to the permeability of the blood-brain barrier and suggests a possible mechanism for the increased severity of WNV infection in older individuals.
A growing body of knowledge is revealing the critical role of circadian physiology in the development of specific pathological entities such as cancer. NK cell function participates in the immune response against infection and malignancy. We have reported previously the existence of a physiological circadian rhythm of NK cell cytolytic activity in rats, suggesting the existence of circadian mechanisms subjacent to NK cell function. At the cellular level, circadian rhythms are originated by the sustained transcriptional-translational oscillation of clock genes that form the cellular clock apparatus. Our aim in this study was to investigate the presence of molecular clock mechanisms in NK cells as well as the circadian expression of critical factors involved in NK cell function. For that purpose, we measured the circadian changes in the expression of clock genes (Per1, Per2, Bmal1, Clock), Dbp (a clock-controlled output gene), CREB (involved in clock signaling), cytolytic factors (granzyme B and perforin), and cytokines (IFN-γ and TNF-α) in NK cells enriched from the rat spleen. The results obtained from this study demonstrate for the first time the existence of functional molecular clock mechanisms in NK cells. Moreover, the circadian expression of cytolytic factors and cytokines in NK cells reported in this study emphasizes the circadian nature of NK cell function.
The flavivirus West Nile virus (WNV) is an emerging pathogen that causes life-threatening encephalitis in susceptible individuals. We investigated the role of the proinflammatory cytokine macrophage migration inhibitory factor (MIF), which is an upstream mediator of innate immunity, in WNV immunopathogenesis. We found that patients suffering from acute WNV infection presented with increased MIF levels in plasma and in cerebrospinal fluid. MIF expression also was induced in WNV-infected mice. Remarkably, abrogation of MIF action by 3 distinct approaches (antibody blockade, small molecule pharmacologic inhibition, and genetic deletion) rendered mice more resistant to WNV lethality. Mif -/-mice showed a reduced viral load and inflammatory response in the brain when compared with wild-type mice. Our results also indicate that MIF favors viral neuroinvasion by compromising the integrity of the blood-brain barrier. In conclusion, the data obtained from this study provide direct evidence for the involvement of MIF in viral pathogenesis and suggest that pharmacotherapeutic approaches targeting MIF may hold promise for the treatment of WNV encephalitis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.