This research highlights the use of game theory to solve the classical problem of the uncapacitated facility location optimization model with customer order preferences through a bilevel approach. The bilevel model provided herein consists of the classical facility location problem and an optimization of the customer preferences, which are the upper and lower level problems, respectively. Also, two reformulations of the bilevel model are presented, reducing it into a mixed-integer single-level problem. An evolutionary algorithm based on the equilibrium in a Stackelberg’s game is proposed to solve the bilevel model. Numerical experimentation is performed in this study and the results are compared to benchmarks from the existing literature on the subject in order to emphasize the benefits of the proposed approach in terms of solution quality and estimation time.
Phase I of control analysis requires large amount of data to fit a distribution and estimate the corresponding parameters of the process under study. However, when only individual observations are available, and no a priori knowledge exists, the presence of outliers can bias the analysis. A relatively recent and successful approach to address this situation is Tukey's Control Chart (TCC), a charting method that applies the Box Plot technique to estimate the control limits. This procedure has proven to be effective for symmetric distributions. However, when skewness is present the average run length performance diminishes significantly. This article proposes a modified version of TCC to consider skewness with minimum assumptions on the underlying distribution of observations. Using theoretical results and Monte Carlo simulation, the modified TCC is tested over several distributions proving a better representation of skewed populations, even in cases when only a limited number of observations are available.
We propose a distribution-free cumulative sum (CUSUM) chart for joint monitoring of location and scale based on a Lepage-type statistic that combines the Wilcoxon rank sum and the Mood statistics. Monte Carlo simulations were used to obtain control limits and examine the in-control and out-of-control performance of the new chart. A direct comparison of the new chart was made with the original CUSUM Lepage based on Wilcoxon rank sum and Ansari-Bradley statistics. The result is a more powerful chart in most of the considered scenarios and thus a more useful CUSUM chart. An example using real data illustrates how the proposed control chart can be implemented.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.