-This study introduces and describes a novel Intrusion Detection System (IDS) called MOVCIDS (MObile Visualization Connectionist IDS). This system applies neural projection architectures to detect anomalous situations taking place in a computer network. By its advanced visualization facilities, the proposed IDS allows providing an overview of the network traffic as well as identifying anomalous situations tackled by computer networks, responding to the challenges presented by volume, dynamics and diversity of the traffic, including novel (0-day) attacks. MOVCIDS provides a novel point of view in the field of IDSs by enabling the most interesting projections (based on the fourth order statistics; the kurtosis index) of a massive traffic dataset to be extracted. These projections are then depicted through a functional and mobile visualization interface, providing visual information of the internal structure of the traffic data. The interface makes MOVCIDS accessible from any mobile device to give more accessibility to network administrators, enabling continuous visualization, monitoring and supervision of computer networks. Additionally, a novel testing technique has been developed to evaluate MOVCIDS and other IDSs employing numerical datasets. To show the performance and validate the proposed IDS, it has been tested in different real domains containing several attacks and anomalous situations. In addition, the importance of the temporal dimension on intrusion detection, and the ability of this IDS to process it, are emphasized in this work.
This study presents a novel, multidisciplinary research project entitled DIPKIP (data acquisition, intelligent processing, knowledge identification and proposal), which is a Knowledge Management (KM) system that profiles the KM status of a company. Qualitative data is fed into the system that allows it not only to assess the KM situation in the company in a straightforward and intuitive manner, but also to propose corrective actions to improve that situation. DIPKIP is based on four separate steps. An initial "Data Acquisition" step, in which key data is captured, is followed by an "Intelligent Processing" step, using neural projection architectures. Subsequently, the "Knowledge Identification" step catalogues the company into three categories, which define a set of possible theoretical strategic knowledge situations: knowledge deficit, partial knowledge deficit, and no knowledge deficit. Finally, a "Proposal" step is performed, in which the "knowledge processes"-creation/acquisition, transference/distribution, and putting into practice/updating-are appraised to arrive at a coherent recommendation. The knowledge updating process (increasing the knowledge held and removing obsolete knowledge) is in itself a novel contribution. DIPKIP may be applied as a decision support system, which, under the supervision of a KM expert, can provide useful and practical proposals to senior management for the improvement of KM, leading to flexibility, cost savings, and greater competitiveness. The research also analyses the future for powerful neural projection models in the emerging field of KM by reviewing a variety of robust unsupervised projection architectures, all of which are used to visualize the intrinsic structure of high-dimensional data sets. The main projection architecture in this research, known as Cooperative Maximum-Likelihood Hebbian Learning (CMLHL), manages to capture a degree of KM topological ordering based on the application of cooperative lateral connections. The results of two real-life case studies in very different industrial sectors corroborated the relevance and viability of the DIPKIP system and the concepts upon which it is founded.Key words: data and knowledge visualization, connectionism and neural nets, knowledge-based systems, knowledge management applications, discovery-based science.
Human Activity Recognition (HAR) is aimed at identifying current subject task performed by a person as a result of analyzing data from wearable sensors. HAR is a very challenging task that has been applied in different areas such as rehabilitation, localization, etc. During the past ten years, plenty of models, number of sensors and sensor placements, and feature transformations have been reported for this task. From this bunch of previous ideas, what seems to be clear is that the very specific applications drive to the selection of the best choices for each case.Present research is focused on early diagnosis of stroke, what involves reducing the feature space of gathered data and subsequent HAR, among other tasks. In this study, an Information Correlation Coefficient (ICC) analysis was carried out followed by a wrapper Feature Selection (FS) method on the reduced input space. Additionally, a novel HAR method is proposed for this specific problem of stroke early diagnosing, comprising an adaptation of the well-known Genetic Fuzzy Finite State Machine (GFFSM) method.To the best of the authors knowledge, this is the very first analysis of the feature space concerning all the previously published feature transformations on raw acceleration data. The main contributions of this study are the optimization of the sample rate, selection of the best feature subset, and learning of a suitable HAR method based on GFFSM to be applied to the HAR problem.
Despite the abundant scientific literature on entrepreneurship, there is still only limited information on young students’ entrepreneurial intentions. The reasons for this, may be generally found in the different conceptual approaches to entrepreneurial intention, and particularly in the variables that regulate and act as antecedents to such intentions. This bias has generated different lines of investigation into the factors relating to entrepreneurial intention among students. One line of investigation is centered on the variables that influence entrepreneurial intention, in particular, relational, educational, and psychological variables, and another is centered on the antecedents of entrepreneurial intention, amongst which is entrepreneurial interest. In this paper, we seek to analyze the relationship between the entrepreneurial interest of Spanish youth and a set of socio-educational, psychological, and health-related variables using principal component analysis. A previously validated ad hoc questionnaire was administered to 1764 students (15–18 years old). Notably, few Spanish youth expressed significantly high entrepreneurial interest; those who did were mostly men with a family tradition of entrepreneurial parents, who held high perceptions of their health and quality of life, and considered it important in business to detect opportunities beforehand and to create employment. Their principal motives were to improve their professional development, to put their ideas into practice, and to achieve economic independence. This paper proposes the early detection of entrepreneurial interests in young people in order to reinforce these interests as potential long-term initiatives.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.