The treatment of advanced gynecologic cancers remains palliative in most of cases. Although systemic treatment has entered into the era of targeted drugs the antitumor efficacies of current therapies are still limited. In this context there is a great need for more active treatment and rationally designed targeted therapies. The PI3K/AKT/mTOR is a signaling pathway in mammal cells that coordinates important cell activities. It has a critical function in the survival, growth, and proliferation of malignant cells and was object of important research in the last two decades. The mTOR pathway emerges as an attractive therapeutic target in cancer because it serves as a convergence point for many growth stimuli and, through its downstream substrates, controls cellular processes that contribute to the initiation and maintenance of cancer. Aberrant PI3K-dependent signaling occurs frequently in a wide range of tumor types, including endometrial, cervical, and ovarian cancers. The present study reviewed the available evidence regarding the potential impact of some mTOR pathway inhibitors in the treatment of gynecological cancer. Few advances in medical management have occurred in recent years in the treatment of advanced or recurrent gynecological malignancies, and a poor prognosis remains. Rationally designed molecularly targeted therapy is an emerging and important option in this setting; then more investigation in PI3K/AKT/mTOR pathway-targeted therapies is warranted.
Purpose: AT13148 is an oral AGC kinase inhibitor, which potently inhibits ROCK and AKT kinases. In preclinical models, AT13148 has been shown to have antimetastatic and antiproliferative activity. Patients and Methods: The trial followed a rolling six design during dose escalation. An intrapatient dose escalation arm to evaluate tolerability and a biopsy cohort to study pharmacodynamic effects were later added. AT13148 was administered orally three days a week (Mon-Wed-Fri) in 28-day cycles. Pharmacokinetic profiles were assessed using mass spectrometry and pharmacodynamic studies included quantifying p-GSK3b levels in platelet-rich plasma (PRP) and p-cofilin and p-MLC2 levels in tumor biopsies. Results: Fifty-one patients were treated on study. The safety of 5-300 mg of AT13148 was studied. Further, the doses of 120-180-240 mg were studied in an intrapatient dose escalation cohort. The dose-limiting toxicities included hypotension (300 mg), pneumonitis, and elevated liver enzymes (240 mg), and skin rash (180 mg). The most common side effects were fatigue, nausea, headaches, and hypotension. On the basis of tolerability, 180 mg was considered the maximally tolerated dose. At 180 mg, mean C max and AUC were 400 nmol/L and 13,000 nmol/L/hour, respectively. At 180 mg, ≥50% reduction of p-cofilin was observed in 3 of 8 posttreatment biopsies. Conclusions: AT13148 was the first dual potent ROCK-AKT inhibitor to be investigated for the treatment of solid tumors. The narrow therapeutic index and the pharmacokinetic profile led to recommend not developing this compound further. There are significant lessons learned in designing and testing agents that simultaneously inhibit multiple kinases including AGC kinases in cancer.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.