Context. Astrophysical jets are ubiquitous in the Universe on all scales, but their large-scale dynamics and evolution in time are hard to observe since they usually develop at a very slow pace. Aims. We aim to obtain the first observational proof of the expected large-scale evolution and interaction with the environment in an astrophysical jet. Only jets from microquasars offer a chance to witness the real-time, full-jet evolution within a human lifetime, since they combine a "short", few parsec length with relativistic velocities. Methods. The methodology of this work is based on a systematic recalibraton of interferometric radio observations of microquasars available in public archives. In particular, radio observations of the microquasar GRS 1758−258 over less than two decades have provided the most striking results. Results. Significant morphological variations in the extended jet structure of GRS 1758−258 are reported here that were previously missed. Its northern radio lobe underwent a major morphological variation that rendered the hotspot undetectable in 2001 and reappeared again in the following years. The reported changes confirm the Galactic nature of the source. We tentatively interpret them in terms of the growth of instabilities in the jet flow. There is also evidence of surrounding cocoon. These results can provide a testbed for models accounting for the evolution of jets and their interaction with the environment.
Context. Microquasars are accreting Galactic sources that are commonly observed to launch relativistic jets. One of the most important issues regarding these sources is the energy budget of ejections relative to the accretion of matter. Aims. The X-ray binary, black hole candidate, and microquasar H 1743-322 exhibited a series of X-ray outbursts between 2003 and 2008. We took optical and near-infrared (OIR) observations with the ESO/NTT telescope during three of these outbursts (2003, 2004, and 2008). The goals of these observations were to investigate the presence of a jet, and to disentangle the various contributions constituting the spectral energy distribution (SED): accretion, ejection, and stellar emission. Methods. Photometric and spectroscopic OIR observations allowed us to produce a high time-resolution lightcurve in K s -band, to analyze emission lines present in the IR spectra, to construct a multiwavelength SED including radio, IR, and X-ray data, and to complete the OIR vs. X-ray correlation of black hole binaries with H 1743-322 data points. Results. We detect rapid flares of duration ∼5 min in the high time-resolution IR lightcurve. We identify hydrogen and helium emission lines in the IR spectra, coming from the accretion disk. The IR SED exhibits the spectral index typically associated with the X-ray high, soft state in our observations taken during the 2003 and 2004 outbursts, while the index changes to one that is typical of the X-ray low, hard state during the 2008 outburst. During this last outburst, we detected a change of slope in the NIR spectrum between the J and K s bands, where the JH part is characteristic of an optically thick disk emission, while the HK s part is typical of optically thin synchrotron emission. Furthermore, the comparison of our IR data with radio and X-ray data shows that H 1743-322 exhibits a faint jet both in radio and NIR domains. Finally, we suggest that the companion star is a late-type main sequence star located in the Galactic bulge. Conclusions. These OIR photometric and spectroscopic observations of the microquasar H 1743-322, which are the first of this source to be published in a broad multiwavelength context, allow us to unambiguously identify two spectra of different origins in the OIR domain, evolving from optically thick thermal emission to optically thin synchrotron emission toward longer wavelengths. Comparing these OIR observations with other black hole candidates suggests that H 1743-322 behaves like a radio-quiet and NIR-dim black hole in the low, hard state. This study will be useful when quantitatively comparing the overall contribution of the compact jet and accretion flow in the energy budget of microquasars.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.