Let G be a graph with the usual shortest-path metric. A graph is δ-hyperbolic if for every geodesic triangle T , any side of T is contained in a δ-neighborhood of the union of the other two sides. A graph is chordal if every induced cycle has at most three edges. In this paper we study the relation between the hyperbolicity of the graph and some chordality properties which are natural generalizations of being chordal. We find chordality properties that are weaker and stronger than being δ-hyperbolic. Moreover, we obtain a characterization of being hyperbolic on terms of a chordality property on the triangles.
There is a well-known correspondence between infinite trees and ultrametric spaces which can be interpreted as an equivalence of categories and comes from considering the end space of the tree. In this equivalence, uniformly continuous maps between the end spaces are translated to some classes of coarse maps (or even classes of metrically proper Lipschitz maps) between the trees.
In this paper we study the relationship of hyperbolicity and (Cheeger) isoperimetric inequality in the context of Riemannian manifolds and graphs. We characterize the hyperbolic manifolds and graphs (with bounded local geometry) verifying this isoperimetric inequality, in terms of their Gromov boundary improving similar results from a previous work. In particular, we prove that having a pole is a necessary condition and, therefore, it can be removed as hypothesis.
2010
The concept of geometric-arithmetic index was introduced in the chemical graph theory recently, but it has shown to be useful. The aim of this paper is to obtain new inequalities involving the geometricarithmetic index GA 1 and characterize graphs extremal with respect to them.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.