Randomised trial of effect of amiodarone on mortality in patients with left-ventricular dysfunction after recent myocardial infarction: EMIAT Julian, D.G.; Camm, A.J.; Frangin, G.; Janse, M.J.; Munoz, A.; Schwartz, P.J.; Simon, P. General rightsIt is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons). Disclaimer/Complaints regulationsIf you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: http://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible. Download date: 22 Mar 2019Randomised trial of effect of amiodarone on mortality in patients with left-ventricular dysfunction after recent myocardial infarction: EMIAT D G Julian, A J Camm, G Frangin, M J Janse, A Munoz, P J Schwartz, P Simon, for the European Myocardial Infarct Amiodarone Trial Investigators* THE LANCET SummaryBackground Ventricular arrhythmias are a major cause of death after myocardial infarction, especially in patients w it h poor left -vent ric ular func t ion. P revious at t empt s t o ident ify and suppress arrhy t hmias w it h v arious antiarrhythmic drugs failed to reduce or actually increase mortality. Amiodarone is a powerful antiarrhythmic drug with several potentially beneficial actions, and has shown benefit in several small-scale studies. We postulated that this drug might reduce mortality in patients at high risk of death after myocardial infarction because of impaired vent ric ular func t ion, irrespective of w hether they had ventricular arrhythmias.
The risk of lung cancer as a result of exposure to diesel exhaust from railroad locomotives was assessed in a cohort of 55,407 white male railroad workers 40 to 64 yr of age in 1959 who had started railroad service 10 to 20 years earlier. The cohort was traced until the end of 1980, and death certificates were obtained for 88% of 19,396 deaths; 1,694 lung cancer cases were identified. Yearly railroad job from 1959 to death or retirement was available from the Railroad Retirement Board, and served as an index of diesel exhaust exposure. Directly standardized rates and a proportional hazards model were used to calculate the relative risk of lung cancer based on work in a job with diesel exhaust exposure beginning in 1959. A relative risk of 1.45 (95% CI = 1.11, 1.89) for lung cancer was obtained in the group of workers 40 to 44 yr of age in 1959, the group with the longest possible duration of diesel exposure. The cohort was selected to minimize the effect of past railroad asbestos exposure, and analysis with workers with possible asbestos exposure excluded resulted in a similarly elevated risk. Workers with 20 yr or more elapsed since 1959, the effective start of diesel exposure for the cohort, had the highest relative risk. These results taken in conjunction with other reported results support the hypothesis that occupational exposure to diesel exhaust results in a small but significantly elevated risk for lung cancer.
The sulfonylurea receptors (SURs) ABCC8/ SUR1 and ABCC9/SUR2 are members of the C-branch of the transport adenosine triphosphatase superfamily. Unlike their brethren, the SURs have no identified transport function; instead, evolution has matched these molecules with K + selective pores, either K IR 6.1/KCNJ8 or K IR 6.2/ KCNJ11, to assemble adenosine triphosphate (ATP)-sensitive K + channels found in endocrine cells, neurons, and both smooth and striated muscle. Adenine nucleotides, the major regulators of ATP-sensitive K + (K ATP ) channel activity, exert a dual action. Nucleotide binding to the pore reduces the activity or channel open probability, whereas Mg-nucleotide binding and/or hydrolysis in the nucleotidebinding domains of SUR antagonize this inhibitory action to stimulate channel openings. Mutations in either subunit can alter this balance and, in the case of the SUR1/KIR6.2 channels found in neurons and insulin-secreting pancreatic β cells, are the cause of monogenic forms of hyperinsulinemic hypoglycemia and neonatal diabetes. Additionally, the subtle dysregulation of K ATP channel activity by a K IR 6.2 polymorphism has been suggested as a predisposing factor in type 2 diabetes mellitus. Studies on K ATP channel null mice are clarifying the roles of these metabolically sensitive channels in a variety of tissues.
The purpose of this paper was to simultaneously examine changes in urothelial ATP and NO release in normal and spinal cord injured animals as well as in spinal cord injured animals treated with botulinum toxin type A (BoNT-A). Furthermore we correlated changes in transmitter release with functional changes in bladder contraction frequency, and determined the effects of BoNT-A on bladder efferent nerve function. Normal and spinal cord injured rat bladders were injected on day 0 with either vehicle (saline containing bovine serum albumin) or BoNT-A. On day 2, in vitro neurotransmitter release and bladder strip contractility studies as well as in vivo cystometrographic studies were conducted. Resting ATP release was significantly enhanced following spinal cord injury (i.e. 57% increase, p<0.05) and was unaffected by BoNT-A treatment. SCI increased hypoosmotic evoked urothelial ATP release by 377% (p<0.05). BoNT-A treatment reduced evoked ATP release in SCI bladders by 83% (p<0.05). In contrast, hypoosmotic stimulation induced NO release was significantly inhibited following SCI (i.e. 50%, p<0.05) but recovered in SCI rats treated with BoNT-A (i.e. 195% increase in NO release in SCI-BTX-treated rats compared to SCI controls, p<0.01). Changes in urothelial transmitter release coincided with a significant decrease in non-voiding bladder contraction frequency (i.e. 71%, p<0.05) in SCI-BTX rats compared to SCI rats. While no difference was measured between neurally evoked contractile amplitude between SCI and SCI-BTX animals, atropine (1 microM) inhibited contractile amplitude to a greater extent (i.e. 76%, p<0.05) in the SCI-BTX group compared to the SCI group. We hypothesize that alterations in the ratio of excitatory (i.e. ATP) and inhibitory (i.e. NO) urothelial transmitters promote bladder hyperactivity in rat bladders following SCI that can be reversed, to a large extent, by treatment with BoNT-A.
ATP and NO are released from the urothelium in the bladder. Detrusor Overactivity (DO) following spinal cord injury results in higher ATP and lower NO release from the bladder urothelium. Our aim was to study the relationship between ATP and NO release in 1) early diabetic bladders, an overactive bladder model; and 2) in "diuretic" bladders, an underactive bladder model. To induce diabetes mellitus female rats received 65 mg/kg streptozocin (i.v.). To induce chronic diuresis rats were fed with 5% sucrose. At 28 days, in vivo open cystometry was performed. Bladder wash was collected to analyze the amount of ATP and NO released into the bladder lumen. For in vitro analysis of ATP and NO release, a Ussing chamber was utilized and hypoosmotic Krebs was perfused on the urothelial side of the chamber. ATP was analyzed with luminometry or HPLC-fluorometry while NO was measured with a Sievers NO-analyzer. In vivo ATP release was increased in diabetic bladders and unchanged in diuretic bladders. In vitro release from the urothelium followed the same pattern. NO release was unchanged both in vitro and in vivo in overactive bladders whereas it was enhanced in underactive bladders. We found that the ratio of ATP/NO, representing sensory transmission in the bladder, was high in overactive and low in underactive bladder dysfunction. In summary, ATP release has a positive correlation while NO release has a negative correlation with the bladder contraction frequency. The urinary ATP/NO ratio may be a clinically relevant biomarker to characterize the extent of bladder dysfunction.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.