In nature, animals are exposed to a broad range of threats imposed by predators, which may strongly influence the ecology of prey species directly or indirectly by affecting their behavior via fear of predation. Here, we studied wood mice Apodemus sylvaticus behavioral and physiological responses to simulated predation risk. Risk avoidance was analyzed by live trapping with control traps and traps treated with feces of common genet Genetta genetta (direct cue of risk) under new moon nights and following by simulated full moon conditions (indirect cue). The time devoted to foraging behavior and capture time were analyzed by video recording mice activity around traps. Food intake was calculated based on the amount of bait remaining in each trap. Fecal corticosterone metabolites (FCMs) were measured by enzyme-immunoassay as indicators of physiological stress responses. Fewer wood mice were captured during full moon, yet only non-breeding adult males clearly avoided common genet odor. Mice were captured sooner at night during the simulated full moon conditions and later in predator-treated traps. Foraging activity was lower when individuals faced predator’s feces, but neither food intake nor FCM levels were affected by predation risk cues. Direct and indirect cues of predation risk selectively affected wood mice behavior, although behavioral responses seem to be modulated by different costs–benefit balances related to the individual’s perception of risk. The lack of physiological responses to predation risk cues suggests that wood mice did not perceive them as reliable stressors or the response was too small or transient to be measured by FCM.
Interactions between coinfecting parasites may take various forms, either direct or indirect, facilitative or competitive, and may be mediated by either bottom-up or top-down mechanisms. Although each form of interaction leads to different evolutionary and ecological outcomes, it is challenging to tease them apart throughout the infection period. To establish the first step towards a mechanistic understanding of the interactions between coinfecting limited-term bacterial parasites and lifelong bacterial parasites, we studied the coinfection of Bartonella sp. (limited-term) and Mycoplasma sp. (lifelong), which commonly co-occur in wild rodents. We infected Bartonella-and Mycoplasma-free rodents with each species, and simultaneously with both, and quantified the infection dynamics and host responses. Bartonella benefited from the interaction; its infection load decreased more slowly in coinfected rodents than in rodents infected with Bartonella alone. There were no indications for bottomup effects, but coinfected rodents experienced various changes, depending on the infection stage, in their body mass, stress levels and activity pattern, which may further affect bacterial replication and transmission. Interestingly, the infection dynamics and changes in the average coinfected rodent traits were more similar to the chronic effects of Mycoplasma infection, whereas coinfection uniquely impaired the host's physiological and behavioral stability. These results suggest that parasites with distinct life history strategies may interact, and their interaction may be asymmetric, non-additive, multifaceted and dynamic through time. Because multiple, sometimes contrasting, forms of interactions are simultaneously at play and their relative importance alternates throughout the course of infection, the overall outcome may change under different ecological conditions.
Chemical signals left by predators are a potential source of information about the risk of predation, and small mammals are known to take them into account when making decisions. We investigated whether wood mice (Apodemus sylvaticus) are more likely to avoid the faeces of resident predators (red fox Vulpes vulpes and common genet Genetta genetta) vs. a novel predator (European pine marten Martes martes). Odour recognition would increase perceived predation risk and reduce food intake by individual mice. Wood mice response to predators was analysed by live‐trapping using two untreated controls (baited/non‐baited) and traps experimentally manipulated with three predator treatments (faeces of red fox, common genet or pine marten). Traps were baited with 4 g of toasted corn, and food intake by wood mice was determined as the amount of bait remaining in each trap. We found that traps treated with faeces of resident predators were the most avoided, and the number of captures in traps treated with pine marten faeces was similar to the control‐baited traps. The variation found in food intake was explained by the interaction between the types of treatment and breeding condition. Food intake was similar in control‐baited traps and in traps with faeces of pine marten, but when predation risk by resident predators (red fox and common genet) was simulated, breeders reduced food intake significantly as compared to non‐breeders. These results indicate that predator recognition and feeding behaviour under predation risk depend on individual factors and the balance of costs‐benefits in each particular predation risk situation at a given place and time.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.