In industrialized nations, potable water is often provided through sophisticated water distribution systems. If pathogenic bacteria are introduced into the water distribution network, the presence of a biofilm can lead to biofilm-assisted retention of the pathogens, affecting the potability of the water. To study the dynamics of planktonic and biofilm-bound pathogens within the large network of pipes in a water distribution system, we develop a network model governing the concentration of introduced pathogens within the bulk fluid and the biofilms lining the pipes. Under time-constant flow regimes within the network, we prove that the long-time behaviour of the entire network is dependent on the Lyapunov exponents for each connection in the network when viewed in isolation and the network connectivity. An efficient algorithm is developed for predicting the long-time behaviour of the pathogen population within large networks using the network's topological ordering. The algorithm's predictions are validated using numerical simulations of the full non-linear system on a range of water distribution network sizes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.