Solar tracking is an efficient strategy to increase the radiative capture of photovoltaic collectors. Within the multiple efforts made in recent decades to improve the production of these facilities, various works have studied solutions to optimize the number of rotation axes (single or dual rotation axes), the degree of collector coverage, the distances between trackers, the geometric arrangement of trackers or the minimization of shading between collectors. However, although in this type of installation it is common to find collectors with geometric shapes other than rectangles, no studies on the influence of the shape of the collectors on the radiative incidence are found in the literature. In this connection, the present work systematically addresses the study of incident solar radiation in photovoltaic installations with dual-axis trackers with collectors of different geometric shapes. By means of the exhaustive study, the conclusion is drawn that, for dual-axis photovoltaic installations with an optimal tracking strategy, the main variables that influence the annual radiative incidence are the spacing between collectors, the coverage ratio (GCR), and the collector surface, while the type of arrangement of collectors and the shape of these do not show predictive values.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.