Gold-mediated
exfoliation of MoS
2
has recently attracted
considerable interest. The strong interaction between MoS
2
and Au facilitates preferential production of centimeter-sized monolayer
MoS
2
with near-unity yield and provides a heterostructure
system noteworthy from a fundamental standpoint. However, little is
known about the detailed nature of the MoS
2
–Au interaction
and its evolution with the MoS
2
thickness. Here, we identify
the specific vibrational and binding energy fingerprints of this interaction
using Raman and X-ray photoelectron spectroscopy, which indicate substantial
strain and charge doping in monolayer MoS
2
. Tip-enhanced
Raman spectroscopy reveals heterogeneity of the MoS
2
–Au
interaction at the nanoscale, reflecting the spatial nonconformity
between the two materials. Micro-Raman spectroscopy shows that this
interaction is strongly affected by the roughness and cleanliness
of the underlying Au. Our results elucidate the nature of the MoS
2
–Au interaction and guide strain and charge doping
engineering of MoS
2
.
The emergence of various exciton-related effects in transition metal dichalcogenides (TMDC) and their heterostructures has inspired a significant number of studies and brought forth several possible applications. Often, standard photoluminescence (PL) with microscale lateral resolution is utilized to identify and characterize these excitonic phenomena, including interlayer excitons (IEXs). We studied the local PL signatures of van der Waals heterobilayers composed of exfoliated monolayers of the (Mo, W)(S, Se)2 TMDC family with high spatial resolution (down to 30 nm) using tip-enhanced photoluminescence (TEPL) with different orders (top/bottom) and on different substrates. We evidence that in MoS2–WSe2 heterobilayers, other PL signals may appear near the reported energy of the IEX transitions, possibly interfering in the interpretation of the results. The extra signals are only observed locally in small areas where the topography looks distorted. We assign those signals to the PL of the individual monolayers, in which the exciton energy is altered by the local strains caused by the formation of blisters and nanobubbles, and the PL is extremely enhanced due to the decoupling of the layers. We prove that even a single nanobubble as small as 60 nm—hence not optically visible—can induce such a suspicious PL feature in the micro-PL spectrum of an otherwise flat heterobilayer. In contrast, a PL peak, which could be assigned to the interlayer exciton in MoS2–WSe2, is observed at ≈1.0 eV.
The hydrolysis of the iron-binding blood plasma glycoprotein transferrin (Tf) has been examined at pH = 7.4 in the presence of a series of Zr-substituted polyoxometalates (Zr-POMs) including Keggin (Et2NH2)10[Zr(PW11O39)2]∙7H2O (Zr-K 1:2), (Et2NH2)8[{α-PW11O39Zr-(μ-OH) (H2O)}2]∙7H2O (Zr-K 2:2), Wells-Dawson K15H[Zr(α2-P2W17O61)2]·25H2O (Zr-WD 1:2), Na14[Zr4(α-P2W16O59)2(μ3-O)2(μ-OH)2(H2O)4]·57H2O (Zr-WD 4:2) and Lindqvist (Me4N)2[ZrW5O18(H2O)3] (Zr-L 1:1), (nBu4N)6[(ZrW5O18(μ–OH))2]∙2H2O (Zr-L 2:2)) type POMs. Incubation of transferrin with Zr-POMs resulted in formation of 13 polypeptide fragments that were observed on sodium dodecyl sulfate poly(acrylamide) gel electrophoresis (SDS-PAGE), but the hydrolysis efficiency varied depending on the nature of Zr-POMs. Molecular interactions between Zr-POMs and transferrin were investigated by using a range of complementary techniques such as tryptophan fluorescence, circular dichroism (CD), 31P-NMR spectroscopy, in order to gain better understanding of different efficiency of investigated Zr-POMs. A tryptophan fluorescence quenching study revealed that the most reactive Zr-WD species show the strongest interaction toward transferrin. The CD results demonstrated that interaction of Zr-POMs and transferrin in buffer solution result in significant secondary structure changes. The speciation of Zr-POMs has been followed by 31P-NMR spectroscopy in the presence and absence of transferrin, providing insight into stability of the catalysts under reaction condition.
The multi-row design of DNA origami structures holds their shape even after severe nicking due to ionizing radiation and their folded structure has a protective effect, i.e., reduced damage compared to free scaffold and similarly sized plasmid DNA.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.