At the start of the UN Decade of Ecosystem Restoration (2021–2030), the restoration of degraded ecosystems is more than ever a global priority. Tree planting will make up a large share of the ambitious restoration commitments made by countries around the world, but careful planning is needed to select species and seed sources that are suitably adapted to present and future restoration site conditions and that meet the restoration objectives.
Here we present a scalable and freely available online tool, Diversity for Restoration (D4R), to identify suitable tree species and seed sources for climate‐resilient tropical forest landscape restoration.
The D4R tool integrates (a) species habitat suitability maps under current and future climatic conditions; (b) analysis of functional trait data, local ecological knowledge and other species characteristics to score how well species match the restoration site conditions and restoration objectives; (c) optimization of species combinations and abundances considering functional trait diversity or phylogenetic diversity, to foster complementarity between species and to ensure ecosystem multifunctionality and stability; and (d) development of seed zone maps to guide sourcing of planting material adapted to present and predicted future environmental conditions. We outline the various elements behind the tool and discuss how it fits within the broader restoration planning process, including a review of other existing tools.
Synthesis and applications. The Diversity for Restoration tool enables non‐expert users to combine species traits, environmental data and climate change models to select tree species and seed sources that best match restoration site conditions and restoration objectives. Originally developed for the tropical dry forests of Colombia, the tool has now been expanded to the tropical dry forests of northwestern Peru–southern Ecuador and the countries of Burkina Faso and Cameroon, and further expansion is underway. Acknowledging that restoration has a wide range of meanings and goals, our tool is intended to support decision making of anyone interested in tree planting and seed sourcing in tropical forest landscapes, regardless of the purpose or restoration approach.
Historically, the construction industry has exhibited slow technological development when compared to other industries. However, during the last several years, investigations related to automation in construction have been conducted, such as additive manufacturing in concrete. This study aims to delve into this topic, providing effective communication between BIM-designed elements and its additive concrete manufacturing, with the help of an articulated robotic arm. Therefore, the paper addresses the preparation of computer code that allows such BIM–robot communication, checking the parameters utilized, and analyzing the results of tests with the equipment involved.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.