Knowledge of component temperatures in gas turbines is essential for the design of thermal management systems and to maintain the lifetime of highly loaded parts as the firing temperature increases in pursuit of improved thermal efficiency. When on-line methods such as pyrometers and thermocouples are not suitable, a thermal history sensor can be used to record the maximum temperatures and read them out after operation. Currently, temperature sensitive paints are applied to obtain temperature profiles in gas turbine components but they present some limitations. A new method based on irreversible changes in the optical properties of thermographic phosphors can potentially overcome some of these difficulties. In particular, a sensor based on the oxidation of europium based phosphors has shown great potential. In this work the temperature sensing capabilities of the phosphor BaMgAl10O17:Eu are investigated in the temperature range from 700 °C to 1200 °C, and suitable measurands defined. The influence of practical factors comprising excitation fluence, exposure time, dopant concentration, cooling down time and atmosphere composition, on measurement accuracy and sensitivity are also reported
Reversible changes in thermographic phosphors have been used for the last 20 years to perform on-line surface temperature measurements in harsh environments such as in gas turbines. However, when on-line measurements cannot be performed, thermal history sensors are used and the temperatures are recorded during operation and read later offline. Thermal paints have been used for many years as thermal history sensors, but they present some disadvantages. Recently, a new method based in irreversible changes in phosphor materials has been proposed and, in particular, oxidation of Eu 2+ to Eu 3+ in BaMgAl 10 O 17 :Eu (BAM:Eu) proved to be temperature sensitive up to 1400 °C. In this work, BAM:Eu powder was manufactured using the sol-gel process. This process can be adapted to create a coating without using any binder via the sol-gel dip coating process. Optical properties of the powder after treatment in air and argon atmospheres are reported, which proved that after treatment in argon the oxidation process Eu 2+ to Eu 3+ can be reversed and therefore a possible reusability of the thermal history phosphor. The change of optical properties with temperature and time has also been investigated for BAM, and a measurand based on the intensity ratio of the emission lines from Eu 2+ and Eu 3+ has been defined, with a temperature range from 700 °C to 1100 °C.
The measurement of temperatures in gas turbines, boilers, heat exchangers and other components exposed to hot gases is essential to design energy efficient systems and improve maintenance procedures. When on-line measurements, such as those performed with thermocouples and pyrometers, are not possible or inconvenient, the maximum temperatures of operation can be recorded and measured off-line after operation. Although thermal paints have been used for many years for this purpose, a novel technique based on irreversible changes in the optical properties of thermographic phosphors, can overcome some of the disadvantages of previous methods. In particular, oxidation of the divalent rare earth ion phosphor BaMgAl10O17:Eu (BAM:Eu) has shown great potential for temperature sensing between 700 °C and 1200 °C. The emission spectra of this phosphor change with temperature, which permits to define an intensity ratio between different lines in the spectra that can be used as a measurand of the temperature. In this paper, the study of the sensing capabilities of a sensor coating based on BAM:Eu phosphor material is addressed for the first time. The sensitivity of the intensity ratio is investigated in the temperature range from 800 °C to 1100 °C, and is proved to be affected by ionic diffusion of transition metals from the substrate. The use of an interlayer made of zirconia proves efficient in reducing ionic diffusion and coatings with this diffusion barrier present sensitivity comparable to that of the powder material.
Decreased photoluminescence of the phosphor BaMgAL 10 O 17 :Eu due to oxidation of the europium dopant at high temperatures has been a subject of study for many years in relation to its use in lighting applications. However, understanding of the underlying effects that cause this reduction in photoluminescence remains incomplete and some of the mechanisms proposed in the literature are contradictory. Recent use of this phosphor as a thermal history sensor has extended the range of exposure conditions normally investigated in lighting applications to higher temperatures and multiple exposure times. The kinetics of the process were investigated by means of spectroscopy and material characterisation techniques. It was found that changes in the luminescence are the result of two simultaneous processes: the oxidation of Eu 2+ ions (through a process of diffusion) and a phase transition. The level of degradation of the phosphor is suggested to follow the Kolmogorov-JohnsonMehl-Avrami (KJMA) model above 900 °C and thus can be predicted with knowledge of the exposure time and temperature. This is useful in applications of the phosphor as a temperature sensor.
The operating temperature of turbomachinery components are increasing the drive towards higher efficiency, lower fuel consumption and reduced emissions. Accurate thermal models are required to simulate the operating temperature of gas turbine components and hence predict service life or other qualities. These models require validation through measurement. Therefore, the quality of the models and prediction are dependent on the uncertainty of the measurements used to validate them. Currently available temperature measurement techniques have limitations in the harsh operating conditions inside gas turbines. Thermocouples are widely used, however, are practically very challenging to apply on rotating components and only provide point measurements. Furthermore, over 80% of the surface must be measured to validate complex thermal models. A new technique under development called thermal history paints (THP) and coatings (THC) overcomes some of these limitations. While the uncertainty estimation model described in this work is directly related to THP, the principles can be applied in general to thermographic phosphors. The paint comprises a proprietary phosphor powder and a water-based silicate binder. The paint is applied to the surface of the test component. When the component is operated the paint records the maximum temperature of exposure across the complete surface of the component. After operation, the paint is read-out using automated instrumentation. The measurements are related to temperature through calibration to deliver a high-resolution temperature profile. An uncertainty model has been developed and described for the first time. The model assesses the uncertainty sources related to the generation of the calibration data and the measurement of the component. It has been applied to determine the uncertainty of the THP in the temperature range 400–750 °C. The estimated uncertainty in this case was, for most samples, ±3–6 °C (67% confidence level). The maximum estimated uncertainty was ±6.3 °C or ±13 °C for 67% or 95% confidence levels respectively. This is believed to be well within the uncertainty of thermal models and the requirements for temperature measurements in harsh environments on gas turbines. These results combined with the fact that the THP can record the temperature at many locations demonstrates that it is a very useful tool for the validation of thermal models and lifing predictions. The uncertainty model was validated by measuring separate test samples and comparing the temperature measured from the THP with the thermocouple data from the heat treatment. The difference was within ±7 °C and the uncertainty bounds determined by the model.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.