Background & Aims-A common cause of liver donor ineligibility is macrosteatosis. Recovery of such livers could enhance donor availability. Living donor studies have shown diet-induced reduction of macrosteatosis enables transplantation. However, cadaveric liver macrosteatotic reduction must be performed ex vivo within hours. Towards this goal, we investigated the effect of accelerated macrosteatosis reduction on hepatocyte viability and function using a novel system of macrosteatotic hepatocytes.
Venipuncture is pivotal to a wide range of clinical interventions and is consequently the leading cause of medical injury in the U.S. Complications associated with venipuncture are exacerbated in difficult settings, where the rate of success depends heavily on the patient's physiology and the practitioner's experience. In this paper, we describe a device that improves the accuracy and safety of the procedure by autonomously establishing a peripheral line for blood draws and IV's. The device combines a near-infrared imaging system, computer vision software, and a robotically driven needle within a portable shell. The device operates by imaging and mapping in real-time the 3D spatial coordinates of subcutaneous veins in order to direct the needle into a designated vein. We demonstrate proof of concept by assessing imaging performance in humans and cannulation accuracy on an advanced phlebotomy training model.
Medical robots provide enhanced dexterity, vision, and safety for a broad range of procedures. In this paper, we present a hand-held, robotic device capable of performing peripheral catheter insertions with high accuracy and repeatability. The device utilizes a combination of ultrasound imaging, miniaturized robotics, and machine learning to safely and efficiently introduce a catheter sheath into a peripheral blood vessel. Here, we present the mechanical design and experimental validation of the device, known as VeniBot. Additionally, we present results on our ultrasound deep learning algorithm for vessel segmentation, and performance on tissue-mimicking phantom models that simulate difficult peripheral catheter placement. Overall, the device achieved first-attempt success rates of 97 ± 4% for vessel punctures and 89 ± 7% for sheath cannulations on the tissue mimicking models (n=240). The results from these studies demonstrate the viability of a hand-held device for performing semi-automated peripheral catheterization. In the future, the use of this device has the potential to improve clinical workflow and reduce patient discomfort by assuring a safe and efficient procedure.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.