This report shows that, by using simple transient photovoltage (TPV) measurements, we can reveal a significant correlation between the TPV decay characteristics and the performance of these perovskite solar cells. TPV decay seems to be composed of a rising part in a short interval after photoexcitation and a long decaying part that extends up to tens of milliseconds. These decay behaviors look different depending on the mesoscopic structures and the perovskite morphology formed therein, as seen from their Scanning Electron Microcopy images and X-ray diffraction patterns. The decay part can be fitted with a three-exponential decay, which reflects different kinetics of electrons in the perovskite/TiO2 layer. On the other hand, the rising part must be fit by a decay equation derived by employing the convolution theorem, where the rising part can be assigned to the electron transport process inside the perovskite layer and the decaying part can be assigned to electron back-transfer. The characteristics can be then understood by considering the effect of crystal defects and trap states in the perovskite grains and perovskite interface with its transport layer, which is TiO2 in this study. Although the TPV decay occurs in a time range much longer than the primary process of photoexcitation as commonly observed in transient photoluminescence spectroscopy, the processes involved in this TPV strongly correlates with the performance of these perovskite solar cells.
Rectangular wave-shaped surface-relief plasmonic gratings (RSR-PGs) have been fabricated from a hybrid polymer by employing a simple nanoimprint photocuring lithography technique using a silicon template, followed by gold nanolayer metallization on top of the formed replica structure. By forming a one-dimensional (1D) plasmonic grating with a periodicity of approximately 700 nm, a reflectance spectral dip was experimentally observed in the visible light region, from 600 to 700 nm, with increasing incident angle from 45° to 60°. This dip can be associated with surface plasmon resonance (SPR) wave excitation, which is coupled with the diffraction order m = − 2. The calculations of reflectance spectra simulation using the rigorous coupled wave analysis (RCWA) method have also been carried out, resulting in the appearance of an SPR dip in the range of 600–700 nm, for incident angles in the range of 45°–65°, which agrees with the experimental results. Interestingly, these RSR-PGs show richer plasmon characteristics than the sine-wave-shaped plasmonic gratings. The experimental and spectral simulation results revealed two different plasmonic excitation modes: long-range SPR and quasi-localized SPR (LSPR). While the long-range SPR was formed above the ridge sections along the grating structure surface, the quasi-localized SPR was locally formed inside the groove. In addition, for RSR-PGs with a narrow groove section, the long-range SPR seems to be coupled with the periodic structure of the grating, resulting in the appearance of plasmonic lattice surface resonance (LSR) that is indicated by a narrower plasmon resonance dip. These characteristics are quite different from those found in the sine wave-shaped plasmonic gratings. The present results may thus provide better insights for understanding the plasmon excitations in this type of rectangular plasmonic grating and might be useful for designing their structure for certain practical applications.
Perovskite solar cells (PSCs) based on lead halide perovskite have attracted much attention owing to the fast development of their power conversion efficiency (PCE) from 3.8% to 25%. Various factors play important roles in affecting the conversion efficiency of PSCs, such as charge carrier generation, transport, recombination, and collection. In addition, the presence of interfacial defects has also a crucial effect in charge carrier transfer and recombination processes. However, the origin and mechanism of interfacial charge recombinations in PSCs are still not comprehensively investigated. For that purpose, we have performed intensity-modulated photovoltage spectroscopy (IMVS) and transient photovoltage (TPV) measurements of PSCs, which were fabricated with FTO/c-TiO2/mp-TiO2/Perovskite/PTAA/Au cell structure. The solar cell (J-V) characteristics of the PSCs on the day-1, day-2, day-3, and day-6 after the cell fabrication, indicating a significant degradation of the cell with time. The Nyquist plots of IMVS measurement on the same day as the J-V measurement seem to be composed of two semicircles at a lower frequency range and a higher frequency range. The semicircle at the lower frequency range enlarged on the day-6 measurement, but the semicircle at higher frequency decreased. The change of this Nyquist plot is in agreement with a significant decrease in the J-V curves. The semicircle at lower frequency may be assigned to the ion diffusion or migration. Therefore, cell degradation may be caused by the liberation of ions (including iodide) from the surface of the perovskite crystal structure. It then increases recombination loss due to back charge transfer from TiO2 to perovskite as indicated by the changing of the semicircle at high frequency into a smaller semicircle. Therefore, the present results reemphasize that the improvement of PSC stability needs the prevention of ions liberations from the surface by introducing passivation substances. In addition, the results also show the practical usefulness of IMVS for inspecting PSC degradation due to such an ion liberation process.
Surface Plasmon Resonance (SPR) is a resonance phenomenon between electromagnetic waves and electrons, which is formed on the interface between metal and dielectric surface. SPR waves can be generated by using a coupler element, such as prisms and gratings. In this study, we analyzed the effect of groove filling in nanograting structures using computation work based on Rigorous Coupled Wave Analysis (RCWA) method. The structure periodicity is 700 nm with a groove depth of around 350 nm. The reflectance spectra calculation by the RCWA method produces the appearance of SPR dip for an empty groove (with air inside the groove) at around 550 nm - 650 nm. The dip wavelength varies on the incident angles from 30 up to 60 degrees. In addition, the shifting of those dips is also predicted from the calculation results when the groove is filled by a medium with a refractive index of 1.5, which can be the basis of its utilization as optical sensing elements.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.