Permeability is an important petrophysical parameter that controls the fluid flow within the reservoir. Estimating permeability presents several challenges due to the conventional approach of core analysis or well testing, which are expensive and time-consuming. On the contrary, artificial intelligence has been adopted in recent years in predicting reliable permeability data. Despite its shortcomings of overfitting and low convergence speed, artificial neural network (ANN) has been the widely used artificial intelligent method. Based on this, the present study conducted permeability prediction using the group method of data handling (GMDH) neural network from well log data of the West arm of the East African Rift Valley. Comparative analysis of GMDH permeability model and ANN methods of the back propagation neural network (BPNN) and radial basis function neural network (RBFNN) were further explored. The results of the study showed that the proposed GMDH model outperformed BPNN and RBFNN as it achieved R/root mean square error (RMSE) value of 0.989/0.0241 for training and 0.868/0.204 for predicting, respectively. Sensitivity analysis carried out revealed that shale volume, standard resolution formation density, and thermal neutron porosity were the most influential well log parameters when developing the GMDH permeability model.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.