Two-point probe and Raman spectroscopy have been used to investigate the effects of vacuum annealing and argon bombardment on the conduction characteristics of multiwalled carbon nanotubes (MWCNTs). Surface contamination has a large effect on the two-point probe conductivity measurements which results in inconsistent and nonreproducible contacts. The electric field under the contacts is enhanced which results in overlapping depletion regions when probe separations are small (<4 μm) causing very high resistances. Annealing at 200 and 500 °C reduced the surface contamination on the MWCNT, but high resistance contacts still did not allow intrinsic conductivity measurements of the MWCNT. The high resistance measured due to the overlapping depletion regions was not observed after annealing to 500 °C. Argon bombardment reduced the surface contamination more than vacuum annealing at 500 °C but caused a slight increase in the defects concentration, enabling the resistivity of the MWCNT to be calculated, which is found to be dependent on the CNT diameter. The observations have significant implications for future CNT-based devices.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.