Modern circuit design increasingly relies on multiple clock domainsat different frequencies and with different phases-in order to achieve performance and power requirements. In this paper, we identify a special case of multiple clocking that encompasses typical design styles, and we present a theory enabling a wide range of register transformations relating to the multiple clock domains. For example, we can perform pipelining, phase abstraction, and retiming across clock domain boundaries. We believe our theory will be useful to extend current work on formal hardware design, synthesis, and verification to multiple-clock-domain systems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.