Peptidoglycan (PG), an essential structure in the cell walls of the vast majority of bacteria, is critical for division and maintaining cell shape and hydrostatic pressure1. Bacteria comprising the Chlamydiales were thought to be one of the few exceptions. Chlamydia encodes genes for PG biosynthesis2–7 and exhibits susceptibility to "anti-PG" antibiotics8,9, yet attempts to detect PG in any chlamydial species have proven unsuccessful (the ‘chlamydial anomaly’10). We employed a novel approach to metabolically label chlamydial PG using D-amino acid dipeptide probes and click chemistry. Replicating Chlamydia trachomatis was labeled with the probes throughout its biphasic, developmental life cycle, and differential probe incorporation experiments conducted in the presence of ampicillin is consistent with the presence of chlamydial PG modifying enzymes. These findings culminate 50 years of speculation and debate concerning the chlamydial anomaly and are the strongest evidence to date that chlamydial species possess functional PG.
The modern patient is increasingly susceptible to bacterial infections including those due to multi-drug resistant organisms (MDROs). Noninvasive whole-body analysis with pathogen-specific imaging technologies can significantly improve patient outcomes by rapidly identifying a source of infection and monitoring the response to treatment, but no such technology exists clinically. Methods We systematically screened 961 random, radiolabeled molecules in silico as substrates for essential metabolic pathways in bacteria, followed by in vitro uptake in representative bacteria – Staphylococcus aureus, Escherichia coli, Pseudomonas aeruginosa, and mycobacteria. Fluorine-labeled analogs, that could be developed as positron emission tomography (PET)-based imaging tracers, were evaluated in a murine myositis model. Results We identified three novel, non-toxic molecules demonstrating selective bacterial uptake: para-aminobenzoic acid (PABA), with uptake in all representative bacteria including Mycobacterium tuberculosis; mannitol, with selectively uptake in S. aureus and E. coli; and sorbitol, accumulating only in E. coli. None accumulated in mammalian cells or heat-killed bacteria, suggesting metabolism-derived specificity. In addition to an extended bacterial panel of laboratory strains, all three molecules rapidly accumulated in respective clinical isolates of interest including MDROs such as methicillin resistant S. aureus (MRSA), extended-spectrum beta-lactamase (ESBL)-producing, and carbapenem-resistant Enterobacteriaceae. In a murine myositis model, fluorine-labeled analogs of all three molecules could rapidly detect and differentiate infection sites from sterile inflammation in mice (P=0.03). Finally, 2-deoxy-2-[F-18]fluoro-D-sorbitol (18F-FDS) can be easily synthesized from 2-deoxy-2-[F-18]fluoro-D-glucose (18F-FDG). PET, utilizing 18F-FDS synthesized using current good manufacturing practice, could rapidly differentiate true infection from sterile inflammation to selectively localize E. coli infection in mice. Conclusion We have developed a systematic approach that exploits unique biochemical pathways in bacteria to develop novel pathogen-specific imaging tracers. These tracers have significant potential for clinical translation to specifically detect and localize a broad range of bacteria, including MDROs.
Staphylococcus aureus is the leading cause of life-threatening infections, frequently originating from unknown or deep-seated foci. Source control and institution of appropriate antibiotics remain challenges, especially with infections due to methicillin-resistant S. aureus (MRSA). In this study, we developed a radiofluorinated analog of para-aminobenzoic acid (2-[18F]F-PABA) and demonstrate that it is an efficient alternative substrate for the S. aureus dihydropteroate synthase (DHPS). 2-[18F]F-PABA rapidly accumulated in vitro within laboratory and clinical (including MRSA) strains of S. aureus but not in mammalian cells. Biodistribution in murine and rat models demonstrated localization at infection sites and rapid renal elimination. In a rat model, 2-[18F]F-PABA positron emission tomography (PET) rapidly differentiated S. aureus infection from sterile inflammation and could also detect therapeutic failures associated with MRSA. These data suggest that 2-[18F]F-PABA has the potential for translation to humans as a rapid, noninvasive diagnostic tool to identify, localize, and monitor S. aureus infections.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.