40 Somatic mutations in cancer genomes are caused by multiple mutational processes each of 41 which generates a characteristic mutational signature. Using 84,729,690 somatic mutations 42 from 4,645 whole cancer genome and 19,184 exome sequences encompassing most cancer 43 types we characterised 49 single base substitution, 11 doublet base substitution, four 44 clustered base substitution, and 17 small insertion and deletion mutational signatures. The 45 substantial dataset size compared to previous analyses enabled discovery of new signatures, 46 separation of overlapping signatures and decomposition of signatures into components that 47 may represent associated, but distinct, DNA damage, repair and/or replication mechanisms. 48 Estimation of the contribution of each signature to the mutational catalogues of individual 49 cancer genomes revealed associations with exogenous and endogenous exposures and 50 defective DNA maintenance processes. However, many signatures are of unknown cause. 51 This analysis provides a systematic perspective on the repertoire of mutational processes 52 contributing to the development of human cancer including a comprehensive reference set 53 of mutational signatures in human cancer. 54 55 56
Many traditional pharmacopeias include and related plants, which contain nephrotoxins and mutagens in the form of aristolochic acids and similar compounds (collectively, AA). AA is implicated in multiple cancer types, sometimes with very high mutational burdens, especially in upper tract urothelial cancers (UTUCs). AA-associated kidney failure and UTUCs are prevalent in Taiwan, but AA's role in hepatocellular carcinomas (HCCs) there remains unexplored. Therefore, we sequenced the whole exomes of 98 HCCs from two hospitals in Taiwan and found that 78% showed the distinctive mutational signature of AA exposure, accounting for most of the nonsilent mutations in known cancer driver genes. We then searched for the AA signature in 1400 HCCs from diverse geographic regions. Consistent with exposure through known herbal medicines, 47% of Chinese HCCs showed the signature, albeit with lower mutation loads than in Taiwan. In addition, 29% of HCCs from Southeast Asia showed the signature. The AA signature was also detected in 13 and 2.7% of HCCs from Korea and Japan as well as in 4.8 and 1.7% of HCCs from North America and Europe, respectively, excluding one U.S. hospital where 22% of 87 "Asian" HCCs had the signature. Thus, AA exposure is geographically widespread. Asia, especially Taiwan, appears to be much more extensively affected, which is consistent with other evidence of patterns of AA exposure. We propose that additional measures aimed at primary prevention through avoidance of AA exposure and investigation of possible approaches to secondary prevention are warranted.
Service Email Alerting click here. top right corner of the article or Receive free email alerts when new articles cite this article-sign up in the box at the http://genome.cshlp.org/subscriptions
Mutational signatures can reveal the history of mutagenic processes that cells were exposed to before and during tumorigenesis. We expect that as-yet-undiscovered mutational processes will shed further light on mutagenesis leading to carcinogenesis. With this in mind, we analyzed the mutational spectra of 36 Asian oral squamous cell carcinomas. The mutational spectra of two samples from patients who presented with oral bacterial infections showed novel mutational signatures. One of these novel signatures, SBS_AnT, is characterized by a preponderance of thymine mutations, strong transcriptional strand bias, and enrichment for adenines in the 4 bp 5′ of mutation sites. The mutational signature described in this manuscript was shown to be caused by colibactin, a bacterial mutagen produced by E. coli carrying the pks-island. Examination of publicly available sequencing data revealed SBS_AnT in 25 tumors from several mucosal tissue types, expanding the list of tissues in which this mutational signature is observed.
Acrylamide, a probable human carcinogen, is ubiquitously present in the human environment, with sources including heated starchy foods, coffee and cigarette smoke.Humans are also exposed to acrylamide occupationally. Acrylamide is genotoxic, inducing gene mutations and chromosomal aberrations in various experimental settings. Covalent haemoglobin adducts were reported in acrylamide-exposed humans and DNA adducts in experimental systems. The carcinogenicity of acrylamide has been attributed to the effects of glycidamide, its reactive and mutagenic metabolite capable of inducing rodent tumors at various anatomical sites. In order to characterize the pre-mutagenic DNA lesions and global mutation spectra induced by acrylamide and glycidamide, we combined DNA-adduct and whole-exome sequencing analyses in an established exposure-clonal immortalization system based on mouse embryonic fibroblasts. Sequencing and computational analysis A 40-word summaryInnovative experimental approaches identify a novel mutational signature of glycidamide, a metabolite of the probable human carcinogen acrylamide. The results may elucidate the cancer risks associated with exposure to acrylamide, commonly found in tobacco smoke, thermally processed foods and beverages.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.