To compare the detection rates of prostate cancer between systematic biopsy and targeted biopsy using a stereotactic robotassisted transperineal prostate platform. Materials and Methods We identified consecutive patients with suspicious lesion(s) on multiparametric magnetic resonance imaging (mpMRI), who underwent both systematic and MRI-transrectal ultrasonography (US) fusion targeted biopsy using our proprietary transperineal robot-assisted prostate biopsy platform between January 2015 and January 2019 at our institution, for retrospective analysis. Comparative analysis was performed between systematic and targeted biopsy using McNemar's test, and the cohort was further stratified by prior biopsy status and Prostate Imaging Reporting and Data System (PI-RADS) v2.0 score. International Society of Urological Pathology (ISUP) grade group (GG) ≥2 cancers (previously known as Gleason grade ≥7) were considered to be clinically significant. Results A total of 500 patients were included in our final analysis, of whom 67 (13%) were patients with low-risk cancer on active surveillance. Of the 433 patients without prior diagnosis of cancer, 288 (67%) were biopsy-na€ ıve. A total of 248 (57%) were diagnosed with prostate cancer, with 199 (46%) having clinically significant prostate cancer (ISUP GG ≥2). There were no statistically significant differences in the overall prostate cancer and clinically significant prostate cancer detection rate between systematic and targeted biopsy (51% vs 49% and 40% vs 38% respectively; P = 0.306 and P = 0.609). Of the 248 prostate cancers detected, 75% (187/248) were detected on both systematic and targeted biopsy, 14% (35/248) were detected on systematic biopsy alone and 11% (26/248) were detected on targeted biopsy alone. Of the 199 clinically significant cancers detected, 69% (138/199) were detected on both systematic and targeted biopsy, 17% (33/199) on systematic biopsy alone and 14% (28/199) on targeted biopsy alone. There were no statistically significant differences in the detection rate between systematic and targeted biopsy for both overall and clinically significant prostate cancer, even when the cohort was stratified by prior biopsy status and PI-RADS score. Targeted biopsy has greater sampling efficiency compared to systematic biopsy for both overall and clinically significant prostate cancer (23.2% vs 9.8%, P < 0.001 and 14.8% vs 5.6%, P < 0.001). Conclusions Using our robot-assisted transperineal prostate platform, combined MRI-US targeted biopsy with concurrent systematic prostate systematic biopsy probably represents the optimal method for the detection of clinically significant prostate cancer.
Background
The optimal number of systematic biopsy cores in the era of multi-parametric MRI targeted biopsy remains unclear, especially on its impact of focal therapy planning. Our objective is to investigate the impact of reducing the number of systematic cores on prostate cancer detection in the era of MRI-US fusion targeted biopsy and as well as its relevance in template planning for focal therapy.
Materials and methods
A retrospective analysis of 398 consecutive men who underwent both systematic saturation (~24 cores) and MRI-US fusion targeted biopsy was performed. Four reduced-core systematic biopsy strategies (two-thirds, half, one-third and one-quarter systematic cores) were modelled and the detection rates of clinically-significant prostate cancer (csPCa defined as grade group ≥2) were compared to that of a full systematic biopsy using McNemar’s test. Focal therapy treatment plans were made based on positive cores on combined (targeted and systematic) biopsy and the various reduced-cores strategies to compare the proportion who had a change in treatment plan.
Results
csPCa was detected in 42% (168/398) of this patient cohort. Non-targeted systematic saturation biopsy had a 21% (83/398) csPCa detection rate. Our four strategies reduced the mean number of non-targeted systematic cores from 21.8 to 14.5, 10.9, 7.3 and 5.4 cores and their csPCa detection rates were significantly decreased to 16%, 13%, 9% and 8% respectively (all p < 0.05). Compared to the reduced-core strategies, a full systematic saturation biopsy resulted in change to the focal therapy treatment plan in 12% (2/3 cores), 19% (1/2 cores), 24% (1/3 cores) and 29% (1/4 cores) of the time (p = 0.0434).
Conclusions
Reducing the number of systematic biopsies when performing an MRI-targeted biopsy leads to reduced detection of csPCa and alter the treatment plans for focal therapy, possibly limiting its oncological efficacy.
Abbreviations & Acronyms ASA = American Society of Anesthesiologists BMI = body mass index CI = confidence interval EBL = estimated blood loss ECUR = extracorporeal urinary reconstruction HN = hydronephrosis ICUR = intracorporeal urinary reconstruction IQR = interquartile range IRCC = International Robotic Cystectomy Consortium LOS = length of hospital stay NAC = neoadjuvant chemotherapy OBS = orthotopic bladder substitute OR = odds ratio PRO = patient-reported outcomes RARC = robot-assisted radical cystectomy RC = radical cystectomy TFI = time to solid food intake
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.