This paper presents an implementation of RoSA, a Robot System Assistant, for safe and intuitive human-machine interaction. The interaction modalities were chosen and previously reviewed using a Wizard of Oz study emphasizing a strong propensity for speech and pointing gestures. Based on these findings, we design and implement a new multi-modal system for contactless human-machine interaction based on speech, facial, and gesture recognition. We evaluate our proposed system in an extensive study with multiple subjects to examine the user experience and interaction efficiency. It reports that our method achieves similar usability scores compared to the entirely human remote-controlled robot interaction in our Wizard of Oz study. Furthermore, our framework’s implementation is based on the Robot Operating System (ROS), allowing modularity and extendability for our multi-device and multi-user method.
Face and person detection are important tasks in computer vision, as they represent the first component in many recognition systems, such as face recognition, facial expression analysis, body pose estimation, face attribute detection, or human action recognition. Thereby, their detection rate and runtime are crucial for the performance of the overall system. In this paper, we combine both face and person detection in one framework with the goal of reaching a detection performance that is competitive to the state of the art of lightweight object-specific networks while maintaining real-time processing speed for both detection tasks together. In order to combine face and person detection in one network, we applied multi-task learning. The difficulty lies in the fact that no datasets are available that contain both face as well as person annotations. Since we did not have the resources to manually annotate the datasets, as it is very time-consuming and automatic generation of ground truths results in annotations of poor quality, we solve this issue algorithmically by applying a special training procedure and network architecture without the need of creating new labels. Our newly developed method called Simultaneous Face and Person Detection (SFPD) is able to detect persons and faces with 40 frames per second. Because of this good trade-off between detection performance and inference time, SFPD represents a useful and valuable real-time framework especially for a multitude of real-world applications such as, e.g., human–robot interaction.
Recently, face recognition became a key element in social cognition which is used in various applications including human–robot interaction (HRI), pedestrian identification, and surveillance systems. Deep convolutional neural networks (CNNs) have achieved notable progress in recognizing faces. However, achieving accurate and real-time face recognition is still a challenging problem, especially in unconstrained environments due to occlusion, lighting conditions, and the diversity in head poses. In this paper, we present a robust face recognition and tracking framework in unconstrained settings. We developed our framework based on lightweight CNNs for all face recognition stages, including face detection, alignment and feature extraction, to achieve higher accuracies in these challenging circumstances while maintaining the real-time capabilities required for HRI systems. To maintain the accuracy, a single-shot multi-level face localization in the wild (RetinaFace) is utilized for face detection, and additive angular margin loss (ArcFace) is employed for recognition. For further enhancement, we introduce a face tracking algorithm that combines the information from tracked faces with the recognized identity to use in the further frames. This tracking algorithm improves the overall processing time and accuracy. The proposed system performance is tested in real-time experiments applied in an HRI study. Our proposed framework achieves real-time capabilities with an average of 99%, 95%, and 97% precision, recall, and F-score respectively. In addition, we implemented our system as a modular ROS package that makes it straightforward for integration in different real-world HRI systems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.