BackgroundThe burden of Congenital Rubella Syndrome (CRS) is typically underestimated in routine surveillance. Updated estimates are needed following the recent WHO position paper on rubella and recent GAVI initiatives, funding rubella vaccination in eligible countries. Previous estimates considered the year 1996 and only 78 (developing) countries.MethodsWe reviewed the literature to identify rubella seroprevalence studies conducted before countries introduced rubella-containing vaccination (RCV). These data and the estimated vaccination coverage in the routine schedule and mass campaigns were incorporated in mathematical models to estimate the CRS incidence in 1996 and 2000–2010 for each country, region and globally.ResultsThe estimated CRS decreased in the three regions (Americas, Europe and Eastern Mediterranean) which had introduced widespread RCV by 2010, reaching <2 per 100,000 live births (the Americas and Europe) and 25 (95% CI 4–61) per 100,000 live births (the Eastern Mediterranean). The estimated incidence in 2010 ranged from 90 (95% CI: 46–195) in the Western Pacific, excluding China, to 116 (95% CI: 56–235) and 121 (95% CI: 31–238) per 100,000 live births in Africa and SE Asia respectively. Highest numbers of cases were predicted in Africa (39,000, 95% CI: 18,000–80,000) and SE Asia (49,000, 95% CI: 11,000–97,000). In 2010, 105,000 (95% CI: 54,000–158,000) CRS cases were estimated globally, compared to 119,000 (95% CI: 72,000–169,000) in 1996.ConclusionsWhilst falling dramatically in the Americas, Europe and the Eastern Mediterranean after vaccination, the estimated CRS incidence remains high elsewhere. Well-conducted seroprevalence studies can help to improve the reliability of these estimates and monitor the impact of rubella vaccination.
Vitamin C (ascorbic acid, AA) can act as an antioxidant or a pro-oxidant in vitro, depending on the absence or the presence, respectively, of redox-active metal ions. Some adults with iron-overload and some premature infants have potentially redox-active, bleomycin-detectable iron (BDI) in their plasma. Thus, it has been hypothesized that the combination of AA and BDI causes oxidative damage in vivo. We found that plasma of preterm infants contains high levels of AA and F 2 -isoprostanes, stable lipid peroxidation end products. However, F 2 -isoprostane levels were not different between those infants with BDI (138 ؎ 51 pg/ml, n ؍ 19) and those without (126 ؎ 41 pg/ml, n ؍ 10), and the same was true for protein carbonyls, a marker of protein oxidation (0.77 ؎ 0.31 and 0.68 ؎ 0.13 nmol/mg protein, respectively). Incubation of BDI-containing plasma from preterm infants did not result in detectable lipid hydroperoxide formation ( 10 nM cholesteryl ester hydroperoxides) as long as AA concentrations remained high. Furthermore, when excess iron was added to adult plasma, BDI became detectable, and endogenous AA was rapidly oxidized. Despite this apparent interaction between excess iron and endogenous AA, there was no detectable lipid peroxidation as long as AA was present at >10% of its initial concentration. Finally, when iron was added to plasma devoid of AA, lipid hydroperoxides were formed immediately, whereas endogenous and exogenous AA delayed the onset of iron-induced lipid peroxidation in a dose-dependent manner. These findings demonstrate that in iron-overloaded plasma, AA acts an antioxidant toward lipids. Furthermore, our data do not support the hypothesis that the combination of high plasma concentrations of AA and BDI, or BDI alone, causes oxidative damage to lipids and proteins in vivo.
In 2000, the United Nations General Assembly adopted the Millennium Development Goals (MDG), with MDG4 being a two-thirds reduction in child mortality by 2015, and with measles vaccination coverage being one of the three indicators of progress toward this goal.* In 2010, the World Health Assembly established three milestones for measles control by 2015: 1) increase routine coverage with the first dose of measles-containing vaccine (MCV1) for children aged 1 year to ≥90% nationally and ≥80% in every district; 2) reduce global annual measles incidence to fewer than five cases per million population; and 3) reduce global measles mortality by 95% from the 2000 estimate (1).† In 2012, the World Health Assembly endorsed the Global Vaccine Action Plan§ with the objective to eliminate measles in four World Health Organization (WHO) regions by 2015. WHO member states in all six WHO regions have adopted measles elimination goals. This report updates the 2000–2013 report (2) and describes progress toward global control and regional measles elimination during 2000–2014. During this period, annual reported measles incidence declined 73% worldwide, from 146 to 40 cases per million population, and annual estimated measles deaths declined 79%, from 546,800 to 114,900. However, progress toward the 2015 milestones and elimination goals has slowed markedly since 2010. To resume progress toward milestones and goals for measles elimination, a review of current strategies and challenges to improving program performance is needed, and countries and their partners need to raise the visibility of measles elimination, address barriers to measles vaccination, and make substantial and sustained additional investments in strengthening health systems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.