Human interleukin 2 (IL-2; Proleukin) is an approved therapeutic for advanced-stage metastatic cancer; however, its use is restricted because of severe systemic toxicity. Its function as a central mediator of T-cell activation may contribute to its efficacy for cancer therapy. However, activation of natural killer (NK) cells by therapeutically administered IL-2 may mediate toxicity. Here we have used targeted mutagenesis of human IL-2 to generate a mutein with approximately 3,000-fold in vitro selectivity for T cells over NK cells relative to wild-type IL-2. We compared the variant, termed BAY 50-4798, with human IL-2 (Proleukin) in a therapeutic dosing regimen in chimpanzees, and found that although the T-cell mobilization and activation properties of BAY 50-4798 were comparable to human IL-2, BAY 50-4798 was better tolerated in the chimpanzee. BAY 50-4798 was also shown to inhibit metastasis in a mouse tumor model. These results indicate that BAY 50-4798 may exhibit a greater therapeutic index than IL-2 in humans in the treatment of cancer and AIDS.
CpG-C are a novel class of CpG motif-containing immunostimulatory sequences (ISS) that includes both a 5'-TCG element and a CpG-containing palindrome. CpG-C drive all known ISS activities and, in particular, are potent enhancers of IFN-alpha from plasmacytoid dendritic cells (PDCs). In our examination of CpG-C sequence requirements, we determined that optimal IFN-alpha-inducing activity could be achieved with longer palindromes. Longer palindromes also correlated with maintenance of the double-stranded (ds) form despite concentration and pH changes, indicating a preference for ds oligodeoxynucleotides (ODNs) by the ISS-induced signaling mechanism for IFN-alpha synthesis. This correlation did not hold for all arms of the ISS-induced immune response, since we did not observe increased B cell activity with the longer palindrome CpG-C ODNs. We further demonstrated that CpG-C retained activity in an in vitro primate system and induced the expression of several cytokines and IFN-alpha-inducible genes when CpG-C were administered in vivo to mice and primates. In conclusion, we have shown CpG-C to exert several types of immune functions across multiple species, and this novel class is thus an attractive candidate for ISS-based therapeutic strategies.
Immunotherapy in combination with suicide gene therapy for breast cancer was tested using a metastatic animal model. Subcutaneous injection of the nonimmunogenic breast cancer cell line 4T1 in BALB/C mice gave rise to tumors in 100% of mice with both micrometastases and macrometastases in the lung. We used the herpes simplex virus thymidine kinase (HSV-TK) gene along with the cytokine genes granulocyte-macrophage colony-stimulating factor (GM-CSF) and interleukin-2 (IL-2) to determine their effect on tumor regression and inhibition of lung metastasis. Adenoviral (AV) vectors carrying these transgenes, in separate constructs, were used in this study. Intratumoral administration of AV-TK followed by 10 days of ganciclovir treatment resulted in a delay in tumor growth and, in some cases, in a low to moderate reduction in tumor volume. Inclusion of either GM-CSF or IL-2 gene with HSV-TK resulted in a slightly greater reduction in tumor volume, although these data were not significantly different from those obtained for TK treatment alone. However, when both cytokine genes were combined with TK, a substantial reduction in tumor growth was observed compared with HSV-TK alone (P < .02). Tumor weight data also exhibited superior efficacy of TK/GM-CSF/IL-2 treatment when compared with animals treated with TK gene only (P < .01). More importantly, TK/GM-CSF/IL-2 combination gene therapy induced a significant reduction in lung metastasis compared with any other treatment groups in the 4T1 model (P < .001 between TK GM-CSF/IL-2 versus TK only). Surgical excision of primary tumors after TK/GM-CSF/IL-2 plus ganciclovir treatment resulted in anti-metastatic activity that was similar to that observed for animals in which no surgery was performed. Survival analysis showed a significant difference between animals treated with AV-TK/GM-CSF/IL-2 and animals treated with TK only at 35 days after virus injection (P < .01). Immunophenotypic data suggest infiltration of lymphocytes within the tumor microenvironment in TK- and cytokine gene-treated animals. Thus, the overall data presented here demonstrate that TK gene therapy in combination with GM-CSF and IL-2 gene-mediated immunotherapy strategies have important implications in the treatment of breast cancer.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.