Cardiac interventional procedures are often performed under fluoroscopic guidance, exposing both the patient and operators to ionizing radiation. To reduce this risk of radiation exposure, we are exploring the use of photoacoustic imaging paired with robotic visual servoing for cardiac catheter visualization and surgical guidance. A cardiac catheterization procedure was performed on two in vivo swine after inserting an optical fiber into the cardiac catheter to produce photoacoustic signals from the tip of the fiber-catheter pair. A combination of photoacoustic imaging and robotic visual servoing was employed to visualize and maintain constant sight of the catheter tip in order to guide the catheter through the femoral or jugular vein, toward the heart. Fluoroscopy provided initial ground truth estimates for 1D validation of the catheter tip positions, and these estimates were refined using a 3D electromagnetic-based cardiac mapping system as the ground truth. The 1D and 3D root mean square errors ranged 0.25-2.28 mm and 1.24-1.54 mm, respectively. The catheter tip was additionally visualized at three locations within the heart: (1) inside the right atrium, (2) in contact with the right ventricular outflow tract, and (3) inside the right ventricle. Lasered regions of cardiac tissue were resected for histopathological analysis, which revealed no laser-related tissue damage, despite the use of 2.98 mJ per pulse at the fiber tip (379.2 mJ/cm 2 fluence). In addition, there was a 19 dB difference in photoacoustic signal contrast when visualizing the catheter tip
Ultrasound is frequently used in conjunction with mammography in order to detect breast cancer as early as possible. However, due largely to the heterogeneity of breast tissue, ultrasound images are plagued with clutter that obstructs important diagnostic features. Short-lag spatial coherence (SLSC) imaging has proven to be effective at clutter reduction in noisy ultrasound images. M-Weighted SLSC and Robust-SLSC (R-SLSC) imaging were recently introduced to further improve image quality at higher lag values, while R-SLSC imaging has the added benefit of enabling the adjustment of tissue texture to produce a tissue signal-to-noise ratio (SNR) that is quantitatively similar to B-mode speckle SNR. This paper investigates the initial application of SLSC, M-Weighted SLSC, and R-SLSC imaging to nine targets in the female breast [two simple cysts, one complicated cyst, two fibroadenomas, one hematoma, one complex cystic and solid mass, one invasive ductal carcinoma (IDC), and one ductal carcinoma in situ (DCIS)]. As expected, R-SLSC beamforming improves cyst and hematoma contrast by up to 6.35 and 1.55 dB, respectively, when compared to the original B-mode image, and similar improvements are achieved with SLSC and M-Weighted SLSC imaging. However, an interesting finding from this initial investigation is that the solid masses (i.e., fibroadenoma, complex cystic and solid mass, IDC, and DCIS), which appear as hypoechoic in the B-mode image, have similarly high coherence to that of surrounding tissue in coherence-based images. This work holds promise for using SLSC, M-Weighted SLSC, and/or R-SLSC imaging to distinguish between fluid-filled and solid hypoechoic breast masses.
Abdominal surgeries carry considerable risk of gastrointestinal and intra-abdominal hemorrhage, which could possibly cause patient death. Photoacoustic imaging is one solution to overcome this challenge by providing visualization of major blood vessels during surgery. We investigate the feasibility of in vivo blood vessel visualization for photoacoustic-guided liver and pancreas surgeries. In vivo photoacoustic imaging of major blood vessels in these two abdominal organs was successfully achieved after a laparotomy was performed on two swine. Three-dimensional photoacoustic imaging with a robot-controlled ultrasound (US) probe and color Doppler imaging were used to confirm vessel locations. Blood vessels in the in vivo liver were visualized with energies of 20 to 40 mJ, resulting in 10 to 15 dB vessel contrast. Similarly, an energy of 36 mJ was sufficient to visualize vessels in the pancreas with up to 17.3 dB contrast. We observed that photoacoustic signals were more focused when the light source encountered a major vessel in the liver. This observation can be used to distinguish major blood vessels in the image plane from the more diffuse signals associated with smaller blood vessels in the surrounding tissue. A postsurgery histopathological analysis was performed on resected pancreatic and liver tissues to explore possible laser-related damage. Results are generally promising for photoacoustic-guided abdominal surgery when the US probe is fixed and the light source is used to interrogate the surgical workspace. These findings are additionally applicable to other procedures that may benefit from photoacoustic-guided interventional imaging of the liver and pancreas (e.g., biopsy and guidance of radiofrequency ablation lesions in the liver).
Photoacoustic imaging–the combination of optics and acoustics to visualize differences in optical absorption – has recently demonstrated strong viability as a promising method to provide critical guidance of multiple surgeries and procedures. Benefits include its potential to assist with tumor resection, identify hemorrhaged and ablated tissue, visualize metal implants (e.g., needle tips, tool tips, brachytherapy seeds), track catheter tips, and avoid accidental injury to critical subsurface anatomy (e.g., major vessels and nerves hidden by tissue during surgery). These benefits are significant because they reduce surgical error, associated surgery-related complications (e.g., cancer recurrence, paralysis, excessive bleeding), and accidental patient death in the operating room. This invited review covers multiple aspects of the use of photoacoustic imaging to guide both surgical and related non-surgical interventions. Applicable organ systems span structures within the head to contents of the toes, with an eye toward surgical and interventional translation for the benefit of patients and for use in operating rooms and interventional suites worldwide. We additionally include a critical discussion of complete systems and tools needed to maximize the success of surgical and interventional applications of photoacoustic-based technology, spanning light delivery, acoustic detection, and robotic methods. Multiple enabling hardware and software integration components are also discussed, concluding with a summary and future outlook based on the current state of technological developments, recent achievements, and possible new directions.
Ultrasound is often used as a supplement for mammography to detect breast cancer. However, one known limitation is the high false-positive rates associated with breast ultrasound. We investigated the use of coherence-based beamforming (which directly displays spatial coherence) as a supplement to standard ultrasound B-mode images in 25 patients recommended for biopsy (26 masses in total), with the eventual goal of decreasing false-positive rates. Because of the coherent signal present within solid masses, coherence-based beamforming methods allow solid and fluid-filled masses to appear significantly different (p < 0.001). When presented to five board-certified radiologists, the inclusion of robust short-lag spatial coherence (R-SLSC) images in the diagnostic pipeline reduced the uncertainty of fluid-filled mass contents from 47.5% to 15.8% and reduced the percentage of fluid-filled masses unnecessarily recommended for biopsy from 43.3% to 13.3%. These results are promising for the potential introduction of R-SLSC (and related coherence-based beamforming methods) into the breast clinic to improve diagnostic certainty and reduce the number of unnecessary biopsies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.