Corrosion processes of the most common steel grades in various environments are the subject of numerous studies. At the same time, the corrosion of welded joints hidden in concrete thickness has not yet been studied. The authors set themselves the task of investigating this process. For this purpose, the corrosion resistance of several metals (grade St.3, U7 and their weld joints) was studied in standard test solutions, simulating a concrete pore liquid, containing sodium carbonates and hydrocarbonates, and sodium chlorides. Data on comparative corrosion resistance in saline media for specified materials were obtained. It was shown that the corrosion rate depends on the ease of CO2 ingress into the solution, and, to a lesser degree, on the metal microstructure. The surface character of the metal samples and the composition of corrosion products were investigated by scanning electron microscopy and an X-ray diffraction analysis. Chemical forms of surface compounds were determined. For the first time, it is clearly shown that the electrode coating flowing during welding does not always protect the weld from corrosion, as was previously believed. The corrosion rate, in this case, is just the same as at the surface of the metal plate of a similar composition. In the conclusion of this work, it is emphasized that in the case of alkaline and chloride-containing media, the protective coating falling from the electrode to the weld does not protect it sufficiently from corrosion.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.