Invasion of a suitable host hepatocyte by mosquito-transmitted Plasmodium sporozoites is an essential early step in successful malaria parasite infection. Yet, precisely how sporozoites target their host cell and facilitate productive infection remains largely unknown. Here, we found that the hepatocyte EphA2 receptor was critical for establishing a permissive intracellular replication compartment, the parasitophorous vacuole. Sporozoites productively infected hepatocytes with high EphA2 expression and deletion of EphA2 protected mice from liver infection. Lack of host EphA2 phenocopied the lack of the sporozoite proteins P52 and P36. Our data suggests that P36 engages EphA2, which is likely to be a key step to establish the permissive replication compartment.
Summary Plasmodium parasites infect the liver and replicate inside hepatocytes before they invade erythrocytes and trigger clinical malaria. Analysis of host signaling pathways affected by liver stage infection could provide critical insights into host-pathogen interactions and reveal targets for intervention. Using protein lysate microarrays we found that Plasmodium yoelii rodent malaria parasites perturb hepatocyte regulatory pathways involved in cell survival, proliferation and autophagy. Notably, the pro-death protein p53 was substantially decreased in infected hepatocytes, suggesting it could be targeted by the parasite to foster survival. Indeed, mice that express increased levels of p53 showed reduced liver stage parasite burden whereas p53 knockout mice suffered increased liver stage burden. Furthermore, boosting p53 levels using the small molecule Nutlin-3 dramatically reduced liver stage burden in vitro and in vivo. We conclude that perturbation of the hepatocyte p53 pathway critically impacts parasite survival. Thus, host pathways might constitute potential targets for host-based antimalarial prophylaxis.
fEvidence from clinical trials of malaria vaccine candidates suggests that both cell-mediated and humoral immunity to pre-erythrocytic parasite stages can provide protection against infection. Novel pre-erythrocytic antibody (Ab) targets could be key to improving vaccine formulations, which are currently based on targeting antigens such as the circumsporozoite protein (CSP). However, methods to assess the effects of sporozoite-specific Abs on pre-erythrocytic infection in vivo remain underdeveloped. Here, we combined passive transfer of monoclonal Abs (MAbs) or immune serum with a luciferase-expressing Plasmodium yoelii sporozoite challenge to assess Ab-mediated inhibition of liver infection in mice. Passive transfer of a P. yoelii CSP MAb showed inhibition of liver infection when mice were challenged with sporozoites either intravenously or by infectious mosquito bite. However, inhibition was most potent for the mosquito bite challenge, leading to a more significant reduction of liver-stage burden and even a lack of progression to blood-stage parasitemia. This suggests that Abs provide effective protection against a natural infection. Inhibition of liver infection was also achieved by passive transfer of immune serum from whole-parasite-immunized mice. Furthermore, we demonstrated that passive transfer of a MAb against P. falciparum CSP inhibited liver-stage infection in a humanized mouse/P. falciparum challenge model. Together, these models constitute unique and sensitive in vivo methods to assess serum-transferable protection against Plasmodium sporozoite challenge.
Intracellular eukaryotic parasites and their host cells constitute complex, coevolved cellular interaction systems that frequently cause disease. Among them, Plasmodium parasites cause a significant health burden in humans, killing up to one million people annually. To succeed in the mammalian host after transmission by mosquitoes, Plasmodium parasites must complete intracellular replication within hepatocytes and then release new infectious forms into the blood. Using Plasmodium yoelii rodent malaria parasites, we show that some liver stage (LS)-infected hepatocytes undergo apoptosis without external triggers, but the majority of infected cells do not, and can also resist Fas-mediated apoptosis. In contrast, apoptosis is dramatically increased in hepatocytes infected with attenuated parasites. Furthermore, we find that blocking total or mitochondria-initiated host cell apoptosis increases LS parasite burden in mice, suggesting that an anti-apoptotic host environment fosters parasite survival. Strikingly, although LS infection confers strong resistance to extrinsic host hepatocyte apoptosis, infected hepatocytes lose their ability to resist apoptosis when anti-apoptotic mitochondrial proteins are inhibited. This is demonstrated by our finding that B-cell lymphoma 2 family inhibitors preferentially induce apoptosis in LS-infected hepatocytes and significantly reduce LS parasite burden in mice. Thus, targeting critical points of susceptibility in the LS-infected host cell might provide new avenues for malaria prophylaxis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.